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An Adaptive Large Neighborhood Search Heuristic for the Pickup
and Delivery Problem with Time Windows

Stefan Ropke, David Pisinger

8th August 2005

Abstract

Thepickup and delivery problem with time windowsis the problem of serving a number of transportation
requestsusing a limited amount of vehicles. Each request involves moving a number of goods from a
pickup location to a delivery location. Our task is to construct routes that visit all locations such that
corresponding pickups and deliveries are placed on the sameroute and such that a pickup is performed
before the corresponding delivery. The routes must also satisfy time window and capacity constraints.

This paper presents a heuristic for the problem based on an extension of theLarge Neighborhood Search
heuristic previously suggested for solving the vehicle routing problem with time windows. The proposed
heuristic is composed of a number of competing sub-heuristics which are used with a frequency correspond-
ing to their historic performance. This general framework is denotedAdaptive Large Neighborhood Search.

The heuristic is tested on more than 350 benchmark instanceswith up to 500 requests. It is able to
improve the best known solutions from the literature for more than 50% of the problems.

The computational experiments indicate that it is advantageous to use several competing sub-heuristics
instead of just one. We believe that the proposed heuristic is very robust and is able to adapt to various
instance characteristics.

Keywords: Pickup and Delivery Problem with Time Windows, Large Neighborhood Search, Simulated
Annealing, Metaheuristics

Introduction

In the considered variant of the pickup and delivery problemwith time windows (PDPTW), we are given a
number ofrequestsandvehicles. A request consists of picking up goods at one location and delivering these
goods to another location. Two time windows are assigned to each request: a pickup time window that specifies
when the goods can be picked up and a delivery time window thattells when the goods can be dropped off.
Furthermoreservice timesare associated with each pickup and delivery. The service times indicate how long
it will take for the pickup or delivery to be performed. A vehicle is allowed to arrive at a location before the
start of the time window of the location, but the vehicle mustthen wait until the start of the time window
before initiating the operation. A vehicle may never arriveto a location after the end of the time window of the
location.

Each request is assigned a set of feasible vehicles. This canfor example be used to model situations where
some vehicles cannot enter a certain location because of thedimensions of the vehicle.

Each vehicle have a limited capacity and it starts and ends its duty at given locations calledstart andend
terminals. The start and end location do not need to be the same and two vehicles can have different start and
end terminals. Furthermore each vehicle is assigned a startand end time. The start time indicates when the
vehicle must leave its start location and the end time denotes the latest allowable arrival at its end location. Note
that the vehicle leaves its depot at the specified start time even though this may introduce a waiting time at the
first location visited.

Our task is to construct valid routes for the vehicles. A route is valid if time windows and capacity con-
straints are obeyed along the route, each pickup is served before the corresponding delivery, corresponding
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pickup and deliveries are served on the same route and the vehicle only serves requests it is allowed to serve.
The routes should be constructed such that they minimize thecostfunction to be described below.

As the number of vehicles is limited, we might encounter situations where some requests cannot be assigned
to a vehicle. These requests are placed in a virtualrequest bank. In a real world situation it is up to a human
operator to decide what to do with such requests. The operator might for example decide to rent extra vehicles
in order to serve the remaining requests.

The objective of the problem is to minimize a weighted sum consisting of the following three components:
1) the sum of the distance traveled by the vehicles, 2) the sumof the time spent by each vehicle. The time spent
by a vehicle is defined as its arrival time at the end terminal minus its start time (which is given a priori), 3) the
number of requests in the request bank. The three terms are weighted by the coefficientsα, β andγ respectively.
Normally a high value is assigned toγ in order to serve as many requests as possible. A mathematical model is
presented in section 1 to define the problem precisely.

The problem was inspired from a real life vehicle routing problem related to transportation of raw materials
and goods between production facilities of a major Danish food manufacturer. For confidentiality reasons, we
are not able to present any data about the real life problem that motivated this research.

The problem is NP-hard as it contains the traveling salesmanproblem as a special case. The objective of
this paper is to develop a method for finding good but not necessarily optimal solutions to the problem described
above. The developed method should preferably be reasonably fast, robust and able to handle large problems.
Thus it seems fair to turn to heuristic methods.

The next paragraphs survey recent work on the PDPTW. Although none of the references mentioned below
consider exactly the same problem as ours, they all face the same core problem.

Nanry and Barnes [15] are among the first to present a metaheuristic for the PDPTW. Their approach is
based on a Reactive Tabu Search algorithm that combines several standard neighborhoods. In order to test
the heuristic, Nanry and Barnes create PDPTW instances froma set of standard VRPTW problems proposed
by Solomon [26]. The heuristic is tested on instances with upto 50 requests. Li and Lim [11] use a hybrid
metaheuristic to solve the problem. The heuristic combinesSimulated Annealing and Tabu search. Their
method is tested on the 9 largest instances from Nanry and Barnes [15] and they consider 56 new instances based
on Solomon’s VRPTW problems [26]. Lim, Lim and Rodrigues [12] apply “Squeaky wheel” optimization and
local search to the PDPTW. Their heuristic is tested on the set of problems proposed by Li and Lim [11]. Lau
and Liang [10] also apply Tabu search to PDPTW and they describe several construction heuristics for the
problem. Special attention is given to how test problems canbe constructed from VRPTW instances.

Recently, Bent and Van Hentenryck [2] proposed a heuristic for the PDPTW based on Large Neighborhood
Search. The heuristic was tested on the problems proposed byLi and Lim [11]. The heuristic by Bent and Van
Hentenryck is probably the most promising metaheuristic for the PDPTW proposed so far.

Gendreau et al. [9] consider a dynamic version of the problem. An ejection chain neighborhood is proposed
and steepest descent and Tabu search heuristics based on theejection chain neighborhood are tested. The tabu
search is parallelized and the sequential and parallelizedversions are compared.

Several column generation methods for PDPTW have been proposed. These methods both include exact
and heuristic methods. Dumas et al. [8] were the first to use column generation for solving PDPTW. They
propose a branch and bound method that is able to handle problems with up to 55 requests.

Xu et al. [29] consider a PDPTW with several extra real-life constraints, including multiple time win-
dows, compatibility constraints and maximum driving time restrictions. The problem is solved using a column
generation heuristic. The paper considers problem instances with up to 500 requests.

Sigurd et al. [24] solve a PDPTW problem related to transportation of livestock. This introduces some extra
constraints, such as precedence relations among the requests, meaning that some requests must be served before
others in order to avoid the spread of diseases. The problem is solved to optimality using column generation.
The largest problems solved contain more than 200 requests.

A recent survey of pickup and delivery problem literature was made by Desaulniers et al. [7].
The work presented in this paper is based on the Masters Thesis of Ropke [19]. In the papers by Pisinger

and Ropke [16], [20] it is shown how the heuristic presented in this paper can be extended to solve a variety of
vehicle routing problems, for example the VRPTW, theMulti Depot Vehicle Routing Problemand theVehicle
Routing Problem with Backhauls.

The rest of this paper is organized as follows: Section 1 define the PDPTW problem formally, Section
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2 describes the basic solution method in a general context; Section 3 describes how the solution method has
been applied to PDPTW and extensions to the method are presented; Section 4 contains the results of the
computational tests. The computational test is focused on comparing the heuristic to existing metaheuristics
and evaluating if the refinements presented in Section 3 improve the heuristic; Section 5 concludes the paper.

1 Mathematical model

This section presents a mathematical model of the problem, it is based on the model proposed by Desaulniers
et al. [7]. The mathematical model serves as a formal description of the problem. As we solve the problem
heuristically we do not attempt to write the model on integer-linear form.

A problem instance of the pickup and delivery problem containsn requests andmvehicles. The problem is
defined on a graph,P = {1, · · · ,n} is the set of pickup nodes,D = {n+1, · · · ,2n} is the set of delivery nodes.
Requesti is represented by nodesi andi +n. K is the set of all vehicles,|K|= m. One vehicle might not be able
to serve all requests, as an example a request might require that the vehicle has a freezing compartment.Ki is
the set of vehicles that are able to serve requesti andPk ⊆ P andDk ⊆ D are the set of pickups and deliveries,
respectively, that can be served by vehiclek, thus for alli andk: k∈Ki ⇔ i ∈Pk∧ i ∈Dk. Requests whereKi 6= K
are calledspecial requests. DefineN = P∪D andNk = Pk∪Dk. Letτk = 2n+k, k∈K andτ′k = 2n+m+k, k∈K
be the nodes that represents the start and end terminal, respectively, of vehiclek. The graphG= (V,A) consists
of the nodesV = N∪{τ1, · · · ,τm}∪{τ′1, · · · ,τ′m} and the arcsA = V ×V. For each vehicle we have a subgraph
Gk = (Vk,Ak), whereVk = Nk∪{τk}∪

{

τ′k
}

andAk = Vk ×Vk. For each edge(i, j) ∈ A we assign a distance
di j ≥ 0 and a travel timeti j ≥ 0. It is assumed that distances and times are nonnegative;di j ≥ 0, ti j ≥ 0 and that
the times satisfy the triangle inequality;ti j ≤ til + tl j for all i, j, l ∈V. For the sake of modeling we also assume
thatti,n+i +si > 0, this makes elimination of sub tours and the pickup-before-delivery constraint easy to model.

Each nodei ∈V has a service timesi and a time window[ai ,bi ]. The service time represents the time needed
for loading and unloading and the time window indicates whenthe visit at the particular location must start; a
visit to nodei can only take place between timeai andbi . A vehicle is allowed to arrive to a location before the
start of the time window but it has to wait until the start of the time window before the visit can be performed.
For each nodei ∈ N, l i is the amount of goods that must be loaded onto the vehicle at the particular node,l i ≥ 0
for i ∈ P andl i = −l i−n for i ∈ D. The capacity of vehiclek∈ K is denotedCk.

Four types of decision variables are used in the mathematical model.xi jk , i, j ∈V,k∈ K is a binary variable
which is one if the edge between nodei and nodej is used by vehiclek and zero otherwise.Sik, i ∈V,k∈ K is a
nonnegative integer that indicates when vehiclek starts the service at locationi, Lik, i ∈V,k∈K is a nonnegative
integer that is an upper bound on the amount of goods on vehicle k after servicing nodei. Sik andLik are only
well-defined when vehiclek actually visits nodei. Finally zi , i ∈ P is a binary variable that indicates if requesti
is placed in the request bank. The variable is one if the request is placed in the request bank and zero otherwise.

A mathematical model is:

minα ∑
k∈K

∑
(i, j)∈A

di j xi jk + β ∑
k∈K

(

Sτ′k,k−aτk

)

+ γ ∑
i∈P

zi (1)

Subject to:

3



∑
k∈Ki

∑
j∈Nk

xi jk +zi = 1 ∀i ∈ P (2)

∑
j∈Vk

xi jk − ∑
j∈Vk

x j,n+i,k = 0 ∀k∈ K,∀i ∈ Pk (3)

∑
j∈Pk∪{τ′k}

xτk, j,k = 1 ∀k∈ K (4)

∑
i∈Dk∪{τk}

xi,τ′k,k = 1 ∀k∈ K (5)

∑
i∈Vk

xi jk − ∑
i∈Vk

x jik = 0 ∀k∈ K,∀ j ∈ Nk (6)

xi jk = 1⇒ Sik +si + ti j ≤ Sjk ∀k∈ K,∀(i, j) ∈ Ak (7)

ai ≤ Sik ≤ bi ∀k∈ K,∀i ∈Vk (8)

Sik ≤ Sn+i,k ∀k∈ K,∀i ∈ Pk (9)

xi jk = 1⇒ Lik + l j ≤ L jk ∀k∈ K,∀(i, j) ∈ Ak (10)

Lik ≤Ck ∀k∈ K,∀i ∈Vk (11)

Lτkk = Lτ′kk = 0 ∀k∈ K (12)

xi jk ∈ {0,1} ∀k∈ K,∀(i, j) ∈ Ak (13)

zi ∈ {0,1} ∀i ∈ P (14)

Sik ≥ 0 ∀k∈ K,∀i ∈Vk (15)

Lik ≥ 0 ∀k∈ K,∀i ∈Vk (16)

The objective function minimizes the weighted sum of the distance traveled, the sum of the time spent by
each vehicle, and the number of requests not scheduled.

Constraint (2) ensures that each pickup location is visitedor that the corresponding request is placed in the
request bank. Constraint (3) ensures that the delivery location is visited if the pickup location is visited and
that the visit is performed by the same vehicle. Constraints(4) and (5) ensure that a vehicle leaves every start
terminal and a vehicle enters every end terminal. Together with constraint (6) this ensures that consecutive
paths betweenτk andτ′k are formed for eachk∈ K.

Constraints (7), (8) ensure thatSik is set correctly along the paths and that the time windows areobeyed.
These constraints also make sub tours impossible. Constraint (9) ensures that each pickup occur before the
corresponding delivery. Constraints (10),(11) and (12) ensure that the load variable is set correctly along the
paths and that the capacity constraints of the vehicles are respected.

2 Solution method

Local search heuristics are often built on neighborhood moves that make small changes to the current solution,
such as moving a request from one route to another or exchanging two requests as in Nanry and Barnes [15]
and Li and Lim [11]. These kind of local search heuristics areable to investigate a huge number of solutions in
a short time, but a solution is only changed very little in each iteration. It is our belief that such heuristics can
have difficulties in moving from one promising area of the solution space to another, when faced with tightly
constrained problems, even when embedded in metaheuristics.

One way of tackling this problem is by allowing the search to visit infeasible solutions by relaxing some
constraints; see e.g. Cordeau et al. [5]. We take another approach — instead of using small “standard moves”
we use very large moves that potentially can rearrange up to 30-40% of all requests in a single iteration. The
price of doing this is that the computation time needed for performing and evaluating the moves becomes much
larger compared to the smaller moves. The number of solutions evaluated by the proposed heuristic per time
unit is only a fraction of the solutions that could be evaluated by a standard heuristic. Nevertheless very good
performance is observed in the computational tests as demonstrated in Section 4.

The proposed heuristic is based onLarge Neighborhood Search (LNS)introduced by Shaw [21]. The LNS
heuristic has been applied to the VRPTW with good results (see Shaw[21], [22] and Bent and Van Hentenryck
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Algorithm 1 LNS heuristic
1 Function LNS(s∈ {solutions}, q∈ N )
2 solution sbest=s;
3 repeat
4 s′ = s;
5 remove q requests from s′

6 reinsert removed requests into s′;
7 if (f(s′) < f(sbest)) then
8 sbest= s′;
9 if accept(s′, s) then
10 s= s′;
11 until stop-criterion met
12 return sbest;

[4]). Recently the heuristic has been applied to the PDPTW aswell (Bent and Van Hentenryck [2]). The LNS
heuristic itself is similar to theruin and recreateheuristic proposed by Schrimpf et al. [23].

The pseudo-code for a minimizing LNS heuristic is shown in Algorithm 1. The pseudo-code assumes
that an initial solutions already has been found, for example by a simple constructionheuristic. The second
parameterq determines the scope of the search.

Lines 5 and 6 in the algorithm are the interesting part of the heuristic. In line 5, a number of requests
are removed from the current solutions′ and in line 6 the requests are reinserted into the current solution
again. The performance and robustness of the overall heuristic is very dependent on the choice of removal
and insertion procedures. In the previously proposed LNS heuristics for VRPTW or PDPTW (see for example
Shaw [21] or Bent and Van Hentenryck [2]) near-optimal methods were used for the reinsert operation. This was
achieved using a truncated branch and bound search. In this paper we take a different approach by using simple
insertion heuristics for performing the insertions. Even though the insertion heuristics themselves usually
deliver solutions of poor quality, the quality of the LNS heuristic is very good as the bad moves that are
generated by the insertion heuristics lead to a fruitful diversification of the search process.

The rest of the code updates the so far best solution and determines if the new solution should be accepted.
A simple accept criteria would be to accept all improving solutions. Such a criteria has been used in earlier
LNS implementations (Shaw [21]). In this paper we use a simulated annealing accept criteria.

In line 11 we check if a stop criterion is met. In our implementation we stop when a certain number of
iterations has been performed.

The parameterq∈ {0, · · · ,n} determines the size of the neighborhood. Ifq is equal to zero then no search at
all will take place as no requests are removed. On the other hand if q is equal ton then the problem is resolved
from scratch in each iteration. In general, one can say that the largerq is, the easier it is to move around in
the solution space, but whenq gets larger each application of the insertion procedure is going to be slower.
Furthermore if one uses a heuristic for inserting requests,then choosingq too large might give bad results.

The LNS local search can be seen as an example of a very large scale neighborhood search as presented by
Ahuja et al. in [1]. Ahuja et al. define very large scale neighborhoods as neighborhoods whose sizes grow expo-
nentially as a function of the problem size, or neighborhoods that simply are too large to be searched explicitly
in practice. The LNS local search fits into the last category,as we have a large number of possibilities for
choosing the requests to remove and a large number of possible insertions. One important difference between
the proposed heuristic and most of the heuristics describedin [1] is that the latter heuristics typically examine
a huge number of solutions, albeit implicitly, while the LNSheuristic proposed in this paper only examines a
relatively low number of solutions.

Instead of viewing the LNS process as a sequence of remove-insert operations, it can also be viewed as a
sequence offix-optimizeoperations. In the fix operation a number of elements in the current solution are fixed.
If for example the solution is represented as a vector of variables, the fix operation could fix a number of these
variables at their current value. The optimize operation then re-optimizes the solution while respecting the
fixation performed in the previous fix-operation. This way ofviewing the heuristic might help us to apply the
heuristic to problems where the remove-insert operations do not seem intuitive. In Section 3 we introduce the
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termAdaptive Large Neighborhood Search(ALNS) to describe an algorithm using several large neighborhoods
in an adaptive way. A more general presentation of the ALNS framework can be found in the subsequent paper
[16].

3 LNS applied to PDPTW

This section describes how the LNS heuristic has been applied to the PDPTW. Compared to the LNS heuristic
developed for the VRPTW and PDPTW by Shaw [21], [22] and Bent and Van Hentenryck [2], [4] the heuristic
in this paper is different in several ways:

1. We are using several removal and insertion heuristics during the same search while the earlier LNS
heuristics only used one method for removal and one method for insertions. The removal heuristics
are described in Section 3.1 and the insertion heuristics are described in Section 3.2. The method for
selecting which sub-heuristic to use is described in Section 3.3. The selection mechanism is guided by
statistics gathered during the search, as described in Section 3.4. We are going to use the termAdaptive
Large Neighborhood Search(ALNS) heuristic for a LNS heuristic that uses several competing removal
and insertion heuristics and chooses between using statistics gathered during the search.

2. Simple and fast heuristics are used for the insertion of requests as opposed to the more complicated
branch and bound methods proposed by Shaw [21], [22] and Bentand Van Hentenryck [2], [4].

3. The search is embedded in a simulated annealing metaheuristic where the earlier LNS heuristics used a
simple descent approach. This is described in Section 3.5.

The present section also describes how the LNS heuristic canbe used in a simple algorithm designed for
minimizing the number of vehicles used to serve all requests. The vehicle minimization algorithm only works
for homogeneous fleets without an upper bound on the number ofvehicles available.

3.1 Request removal

This section describes three removal heuristics. All threeheuristics take a solution and an integerq as input.
The output of the heuristic is a solution whereq requests have been removed. The heuristicsShaw removaland
Worst removalfurthermore have a parameterp that determines the degree of randomization in the heuristic.

3.1.1 Shaw removal heuristic

This removal heuristic was proposed by Shaw in [21, 22]. In this section it is slightly modified to suit the
PDPTW. The general idea is to remove requests that are somewhat similar, as we expect it to be reasonably
easy to shuffle similar requests around and thereby create new, perhaps better solutions. If we choose to remove
requests that are very different from each other then we might not gain anything when reinserting the requests
as we might only be able to insert the requests at their original positions or in some bad positions. We define
the similarity of two requestsi and j using arelatedness measure R(i, j). The lowerR(i, j) is, the more related
are the two requests.

The relatedness measure used in this paper consists of four terms: a distance term, a time term, a capacity
term and a term that considers the vehicles that can be used toserve the two requests. These terms are weighted
using the weightsϕ, χ, ψ andω respectively. The relatedness measure is given by:

R(i, j) = ϕ
(

dA(i),A( j) +dB(i),B( j)

)

+ χ
(
∣

∣TA(i)−TA( j)

∣

∣+
∣

∣TB(i)−TB( j)

∣

∣

)

(17)

+ψ
∣

∣l i − l j
∣

∣+ ω

(

1−

∣

∣Ki
�

K j
∣

∣

min
{

|Ki| ,
∣

∣K j

∣

∣

}

)

A(i) andB(i) denote the pickup and delivery locations of requesti andTi indicates the time when locationi is
visited.di j , l i andKi are defined in Section 1. Using the decision variableSik from Section 1, we can writeTi as
Ti = ∑k∈K ∑ j∈Vk

Sikxi jk . The term weighted byϕ measures distance, the term weighted byχ measures temporal
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Algorithm 2 Shaw Removal
1 Function ShawRemoval(s∈ {solutions}, q∈ N, p∈ R+)
2 request : r = a randomly selected request from S;
3 set of requests : D = {r};
4 while |D| < q do
5 r = a randomly selected request from D;
6 Array : L = an array containing all request from s not in D;
7 sort L such that i < j ⇒ R(r,L[i]) < R(r,L[ j]);
8 choose a random number y from the interval[0,1);
9 D = D� {L [yp |L|]};
10 end while
11 remove the requests in D from s;

Algorithm 3 Worst Removal
1 Function WorstRemoval(s∈ {solutions}, q∈ N, p∈ R+)
2 while q > 0 do
3 Array : L = All planned requests i, sorted by descending cost(i,s);
4 choose a random number y in the interval[0,1);
5 request : r = L [yp |L|];
6 remove r from solution s;
7 q = q−1;
8 end while

connectedness, the term weighted byψ compares capacity demand of the requests and the term weighted by
ω ensures that two requests get a high relatedness measure if only a few or no vehicles are able to serve both
requests. It is assumed thatdi j , Tx andl i are normalized such that 0≤ R(i, j) ≤ 2(ϕ+ χ)+ψ+ω. This is done
by scalingdi j , Tx andl i such that they only take on values from[0,1]. Notice that we cannot calculateR(i, j), if
requesti or j is placed in the request bank.

The relatedness is used to remove requests in the same way as described by Shaw [21]. The procedure for
removing requests is shown in pseudo code in Algorithm 2. Theprocedure initially chooses a random request
to remove and in the subsequent iterations it chooses requests that are similar to the already removed requests.
A determinism parameterp≥ 1 introduces some randomness in the selection of the requests (a low value ofp
corresponds to much randomness).

Notice that the sorting in line 7 can be avoided in an actual implementation of the algorithm, as it is sufficient
to use a linear time selection algorithm [6] in line 9.

3.1.2 Random removal

The random removal algorithm simply selectsq requests at random and removes them from the solution. The
random removal heuristic can be seen as a special case of the Shaw removal heuristic withp = 1. We have
implemented a separate random removal heuristic though, asit obviously can be implemented to run faster than
the Shaw removal heuristic.

3.1.3 Worst removal

Given a requesti served by some vehicle in a solutions we define thecost of the request ascost(i,s) =
f (s)− f−i(s) where f−i(s) is the cost of the solution without requesti (the request is not moved to the request
bank, but removed completely). It seems reasonable to try toremove requests with high cost and inserting them
at another place in the solution to obtain a better solution value, therefore we propose a removal heuristic that
removes requests with highcost(i,s).

The worst removal heuristic is shown in pseudo-code in Algorithm 3. It reuses some of the ideas from
Section 3.1.1.
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Notice that the removal is randomized, with the degree of randomization controlled by the parameterp like
in Section 3.1.1. This is done to avoid situations where the same requests are removed over and over again.

One can say that the Shaw removal heuristic and the worst removal heuristic belong to two different classes
of removal heuristics. The Shaw heuristic is biased towardsselecting requests that “easily” can be exchanged,
while the worst-removal selects the requests that appear tobe placed in the wrong position in the solution.

3.2 Inserting requests

Insertion heuristics for vehicle routing problems are typically divided into two categories:sequentialandpar-
allel insertion heuristics. The difference between the two classes is that sequential heuristics build one route
at a time while parallel heuristics construct several routes at the same time. Parallel and sequential insertion
heuristics are discussed in further detail in [17]. The heuristics presented in this paper are all parallel. The
reader should observe that the insertion heuristic proposed here will be used in a setting where they are given a
number of partial routes and a number of requests to insert — they seldom build the solution from scratch.

3.2.1 Basic greedy heuristic

The basic greedy heuristic is a simple construction heuristic. It performs at mostn iterations as it inserts one
request in each iteration. Let∆ fi,k denote the change in objective value incurred by inserting requesti into route
k at the position that increases the objective value the least. If we cannot insert requesti in routek, then we set
∆ fi,k = ∞ . We then defineci asci = mink∈K {∆ fi,k}. In other words,ci is the “cost” of inserting requesti at
its best position overall. We denote this position bythe minimum cost position. Finally we choose the requesti
that minimizes

min ci

i ∈U
(18)

and insert it at its minimum cost position.U is the set of unplanned requests. This process continues until all
requests have been inserted or no more requests can be inserted.

Observe that in each iteration we only change one route (the one we inserted into), and we do not have to
recalculate insertion costs in all the other routes. This property is used in the concrete implementation to speed
up the insertion heuristics.

An obvious problem with this heuristic is that it often postpones the placement of “hard” requests (requests
which are expensive to insert, that is requests with largeci) to the last iterations where we do not have many
opportunities for inserting the requests as many of the routes are “full”. The heuristic presented in the next
section tries to circumvent this problem.

3.2.2 Regret heuristics

The regret heuristic tries to improve upon the basic greedy heuristic by incorporating a kind of look ahead
information when selecting the request to insert. Letxik ∈ {1, ...,m} be a variable that indicates the route
for which requesti has thek’th lowest insertion cost, that is∆ fi,xik ≤ ∆ fi,xik′

for k ≤ k′. Using this notation
we can expressci from Section 3.2.1 asci = ∆ fi,xi1. In the regret heuristic we define aregret value c∗i as
c∗i = ∆ fi,xi2 −∆ fi,xi1. In other words, the regret value is the difference in the cost of inserting the request in its
best route and its second best route. In each iteration the regret heuristic chooses to insert the requesti that
maximizes

max c∗i
i ∈U

The request is inserted at its minimum cost position. Ties are broken by selecting the insertion with lowest cost.
Informally speaking, we choose the insertion that we will regret most if it is not done now.

The heuristic can be extended in a natural way to define a classof regret heuristics: theregret-kheuristic is
the construction heuristic that in each construction step chooses to insert the requesti that maximizes:

max
{

∑k
j=1

(

∆ fi,xi j −∆ fi,xi1

)}

i ∈U
(19)
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If some requests cannot be inserted in at leastm− k+ 1 routes, then the request that can be inserted in the
fewest number of routes (but still can be inserted in at leastone route) is inserted. Ties are broken by selecting
the request with best insertion cost. The request is inserted at its minimum cost position. The regret heuristic
presented at the start of this section is a regret-2 heuristic and the basic insertion heuristic from Section 3.2.1 is
a regret-1 heuristic because of the tie-breaking rules. Informally speaking, heuristics withk > 2 investigate the
cost of inserting a request on thek best routes and insert the request whose cost difference between inserting it
into the best route and thek−1 best routes is largest. Compared to a regret-2 heuristic, regret heuristics with
large values ofk discover earlier that the possibilities for inserting a request become limited.

Regret heuristics have been used by Potvin and Rousseau [17]for the VRPTW. The heuristic in their paper
can be categorized as a regret-k heuristic withk = m, as all routes are considered in an expression similar to
(19). The authors do not use the change in the objective valuefor evaluating the cost of an insertion, but use a
special cost function. Regret heuristics can also be used for combinatorial optimization problems outside the
vehicle routing domain, an example of an application to the Generalized Assignment Problem was described
by Martello and Toth [13].

As in the previous section we use the fact that we only change one route in each iteration to speed up the
regret heuristic.

3.3 Choosing a removal and an insertion heuristic

In Section 3.1 we defined three removal heuristics (shaw, random andworst removal), and in Section 3.2 we
defined a class of insertion heuristics (basic insertion, regret-2, regret-3, etc.). One could select one
removal and one insertion heuristic and use these throughout the search, but in this paper we propose to use all
heuristics. The reason for doing this is that for example theregret-2 heuristic may be well suited for one type
of instance while the regret-4 heuristic may be the best suited heuristic for another type of instance. We believe
that alternating between the different removal and insertion heuristics gives us a more robust heuristic overall.

In order to select the heuristic to use, we assign weights to the different heuristics and use aroulette wheel
selection principle. If we havek heuristics with weightswi, i ∈ {1,2, · · · ,k}, we select heuristicj with proba-
bility

w j

∑k
i=1 wi

(20)

Notice that the insertion heuristic is selected independently of the removal heuristic (and vice versa). It is
possible to set these weights by hand, but it can be a quite involved process if many removal and insertion
heuristics are used. Instead an adaptive weight adjusting algorithm is proposed in Section 3.4.

3.4 Adaptive weight adjustment

This section describes how the weightsw j introduced in Section 3.3 can be automatically adjusted using statis-
tics from earlier iterations.

The basic idea is to keep track of a score for each heuristic, which measures how well the heuristic has
performed recently. A high score corresponds to a successful heuristic. The entire search is divided into a
number ofsegments. A segment is a number of iterations of the ALNS heuristic; here we define a segment as
100 iterations. The score of all heuristics is set to zero at the start of each segment. The score of a heuristic is
increased by eitherσ1, σ2 or σ3 in the following situations:

Parameter Description
σ1 The last remove-insert operation resulted in a new global best solution.
σ2 The last remove-insert operation resulted in a solution that has not been ac-

cepted before. The cost of the new solution is better than thecost of current
solution.

σ3 The last remove-insert operation resulted in a solution that has not been ac-
cepted before. The cost of the new solution is worse than the cost of current
solution, but the solution was accepted.
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The case forσ1 is clear: if a heuristic is able to find a new overall best solution, then it has done well.
Similarly if a heuristic has been able to find a solution that has not been visited before and it is accepted by the
accept criteria in the ALNS search then the heuristic has been successful as it has brought the search forward.
It seems sensible to distinguish between the two situationscorresponding to parametersσ2 andσ3 because we
prefer heuristics that can improve the solution, but we are also interested in heuristics that can diversify the
search and these are rewarded byσ3. It is important to note that we only reward unvisited solutions. This is to
encourage heuristics that are able to explore new parts of the solution space. We keep track of visited solutions
by assigning a hash key to each solution and storing the key ina hash table.

In each iteration we apply two heuristics: a removal heuristic and an insertion heuristic. The scores for both
heuristics are updated by the same amount as we can not tell whether it was the removal or the insertion that
was the reason for the “success”.

At the end of each segment we calculate new weights using the recorded scores. Letwi j be the weight of
heuristici used in segmentj as the weight used in formula (20). In the first segment we weight all heuristics
equally. After we have finished segmentj we calculate the weight for all heuristicsi to be used in segment
j +1 as follows:

wi, j+1 = wi j (1− r)+ r
πi

θi

πi is the score of heuristici obtained during the last segment andθi is the number of times we have attempted
to use heuristici during the last segment. Thereaction factor rcontrols how quickly the weight adjustment
algorithm reacts to changes in the effectiveness of the heuristics. If r is zero then we do not use the scores at
all and stick to the initial weights. Ifr is set to one then we let the score obtained in the last segmentdecide the
weight.

Figure 1 shows an example of how the weights of the three removal heuristics progress over time for a
certain problem instance. The plots are decreasing becauseof the simulated annealing acceptance criteria to
be described in the next section. Towards the end of the search we only accept good moves and therefore it is
harder for the heuristic to get high scores.

3.5 Acceptance and stopping criteria

As described in Section 2 a simple acceptance criteria wouldbe to only accept solutions that are better than
the current solution. This would give us a descent heuristiclike the one proposed by Shaw [21]. However,
such a heuristic has a tendency to get trapped in a local minimum so it seems sensible to, on occasion, accept
solutions that are worse than the current solution. To do this, we use the acceptance criteria from simulated

annealing. That is, we accept a solutions′ given the current solutions with probabilitye−
f(s′)− f (s)

T whereT > 0
is thetemperature.

The temperature starts out atTstart and is decreased every iteration using the expressionT = T · c, where
0 < c < 1 is thecooling rate. A good choice ofTstart is dependent on the problem instance at hand, so instead
of specifyingTstart as a parameter we calculateTstart by inspecting our initial solution. First we calculate the
costz′ of this solution using a modified objective function. In the modified objective function,γ (cost of having
requests in the request bank) is set to zero. The start temperature is now set such that a solution that isw
percent worse than the current solution is accepted with probability 0.5. The reason for settingγ to zero is that
this parameter typically is large and could cause us to set the starting temperature to a too large number if the
initial solution had some requests in the request bank. Noww is a parameter that has to be set. We denote this
parameter thestart temperature control parameter.

The algorithm stops when a specified number of LNS iterationshave passed.

3.6 Applying noise to the objective function

As the proposed insertion heuristics are quite myopic, we believe that it is worthwhile to randomize the insertion
heuristics such that they do not always make the move that seems best locally. This is achieved by adding a
noise term to the objective function. Every time we calculate the costC of an insertion of a request into a route,
we also calculate a random numbernoisein the interval[−maxN,maxN] and calculate the modified insertion
costsC′ = max{0,C+noise}. At each iteration we decide if we should useC or C′ to determine the insertions
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Figure 1: The figure shows an example of how the weights for the three removal heuristics progressed during one
application of the heuristic. The iteration number is shownalong thex-axis and the weight is shown along they-axis. The
graph illustrates that for the particular problem, therandomremoval and theShawremoval heuristics perform virtually
equally well, while theworst heuristic performs worst. Consequently theworst heuristic is not used as often as the two
other heuristics.

to perform. This decision is taken by the adaptive mechanismdescribed earlier by keeping track of how often
the noise applied insertions and the “clean” insertions aresuccessful.

In order to make the amount of noise related to the propertiesof the problem instance, we calculatemaxN=
η ·maxi, j∈V

{

di j
}

, whereη is a parameter that controls the amount of noise. We have chosen to letmaxNbe
dependent on the distancesdi j as the distances are an important part of the objective in allof the problems we
consider in this paper.

It might seem superfluous to add noise to the insertion heuristics as the heuristics are used in a simulated
annealing framework that already contains randomization,however we believe that the noise applications are
important as our neighborhood is searched by means of the insertion heuristics and not randomly sampled.
Without the noise applications we do not get the full benefit of the simulated annealing metaheuristic. This
conjecture is supported by the computational experiments reported in table 3.

3.7 Minimizing the number of vehicles used

Minimization of the number of vehicles used to serve all requests is often considered as first priority in the
vehicle routing literature. The heuristic proposed so far is not able to cope with such an objective, but by
using a simple two stage algorithm that minimizes the numberof vehicles in the first stage and then minimizes
a secondary objective (typically traveled distance) in thesecond stage, we can handle such problems. The
vehicle minimization algorithm only works for problems with a homogeneous fleet. We also assume that the
number of vehicles available is unlimited, such that constructing an initial feasible solution always can be done.

A two-stage method was also used by Bent and Van Hentenryck [4], [2], but while they used two different
neighborhoods and metaheuristics for the two stages, we usethe same heuristic in both stages.

The vehicle minimization stage works as follows: first an initial feasible solution is created using a sequen-
tial insertion method that constructs one route at a time until all requests have been planned. The number of
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vehicles used in this solution is the initial estimate on thenumber of vehicles necessary. Next step is to remove
one route from our feasible solution. The requests on the removed route are placed in the request bank. The
resulting problem is solved by our LNS heuristic. When the heuristic is run, a high value is assigned toγ such
that requests are moved out of the request bank if possible. If the heuristic is able to find a solution that serves
all requests, a new candidate for the minimum number of vehicles has been found. When such a solution has
been found, the LNS heuristic is immediately stopped, one more route is removed from the solution and the
process is reiterated. If the LNS heuristic terminates without finding a solution where all requests are served,
then the algorithm steps back to the last solution encountered in which all requests were served. This solution
is used as a starting solution in the second stage of the algorithm, which simply consists of applying the normal
LNS heuristic.

In order to keep the running time of the vehicle minimizationstage down, this stage is only allowed to
spendΦ LNS iterations all together such that if the first application of the LNS heuristic for example spendsa
iterations to find a solution where all requests are planned,then the vehicle minimization stage is only allowed
to performΦ−a LNS iterations to minimize the number of vehicles further. Another way to keep the running
time limited is to stop the LNS heuristic when it seems unlikely that a solution exists in which all requests are
planned. In practice this is implemented by stopping the LNSheuristic if 5 or more requests are unplanned
and no improvement in the number of unplanned requests has been found in the lastτ LNS iterations. In the
computational experimentsΦ was set to 25000 andτ was set to 2000.

3.8 Discussion

Using several removal and insertion heuristics during the search may be seen as using local search with several
neighborhoods. To the best of our knowledge this idea has notbeen used in the LNS literature before. The
related Variable Neighborhood Search (VNS) was proposed byMladenovíc and Hansen [14]. VNS is a meta-
heuristic framework using a parameterized family of neighborhoods. The metaheuristic has received quite a lot
of attention in the recent years and has provided impressiveresults for many problems. Where ALNS makes
use of several unrelated neighborhoods, VNS typically is based on a single neighborhood which is searched
with variable depth.

Several metaheuristics can be used at the top level of ALNS tohelp the heuristic escape a local minimum.
We have chosen to use simulated annealing as the ALNS heuristic already contains the random sampling ele-
ment. For a further discussion of metaheuristic frameworksused in connection with ALNS see the subsequent
paper [16].

The request bank is an entity that makes sense for many real life applications. In the problems considered in
Section 4 we do not accept solutions with unscheduled requests, but the request bank allows us to visit infeasible
solutions in a transition stage, improving the overall search. The request bank is particularly important when
minimizing the number of vehicles.

4 Computational experiments

In this section we describe our computational experiments.We first introduce a set of tuning instances in
Section 4.1. In Section 4.2 we evaluate the performance of the proposed construction heuristics on the tuning
instances. In Section 4.3 we describe how the parameters of the ALNS heuristic were tuned, and in Section 4.4
we present the results obtained by the ALNS heuristic and a simpler LNS heuristics.

4.1 Tuning instances

First a set of representative tuning instances is identified. The tuning instances must have a fairly limited size as
we want to perform numerous experiments on the tuning problems and they should somehow be related to the
problems our heuristic is targeted at. In the case at hand we want to solve some standard benchmark instances
and a new set of randomly generated instances.

Our tuning set consists of 16 instances. The first four instances are LR1_2_1, LR202, LRC1_2_3, and
LRC204 from Li and Lim’s benchmark problems [11], containing between 50 and 100 requests. The number
of available vehicles was set to one more than that reported by Li and Lim to make it easier for the heuristic
to find solutions with no requests in the request bank. The last 12 instances are randomly generated instances.
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These instances contain both single depot and multi depot problems and problems with requests that only can
be served by a subset of the vehicle fleet. All randomly generated problems contain 50 requests.

4.2 Evaluation of construction heuristics

First we examine how the simple construction heuristics from Section 3.2 perform on the tuning problems, to
see how well they work without the LNS framework. The construction heuristics regret-1, regret-2, regret-
3, regret-4 and regret-m have been implemented. Table 1 shows the results of the test.As the construction
heuristics are deterministic, the results were produced byapplying the heuristics to each of the 16 test problems
once.

Basic greedy Regret-2 Regret-3 Regret-4 Regret-m

Avg. gap (%) 40.7 30.3 26.3 26.0 27.7
Fails 3 3 3 2 0
Time (s) 0.02 0.02 0.02 0.02 0.03

Table 1: Performance of construction heuristics. Each column in thetable corresponds to one of the construction
heuristics. These simple heuristics were not always able toconstruct a solution where all requests are served, hence for
each heuristic we report the number of times this happened inthe fails row. TheAvg. gaprow shows the average relative
difference between the found solution and the best known solution. Only solutions where all requests are served are
included in the calculations of the average relative difference. The last row shows the average time (in seconds) needed
for applying the heuristic to one problem, running on a 1.5 GHz Pentium IV.

The results show that the proposed construction heuristicsare very fast, but also very imprecise. Basic
greedy is the worst heuristic, while all the regret heuristics are comparable with respect to the solution quality.
Regret-m stands out though, as it is able to serve all requests in all problems. It would probably be possible to
improve the results shown in Table 1 by introducing seed requests as proposed by e.g. Solomon [26]. However
we are not going to report on such experiments in this paper. It might be surprising that these very imprecise
heuristics can be used as the foundation of a much more precise local search heuristic, but as we are going to
see in the following sections, this is indeed possible.

4.3 Parameter tuning

This part of the paper serves two purposes. First it describes how the parameters used for producing the results
in Section 4.4 were found. Next, it tries to unveil which partof the heuristic contributes most to the solution
quality.

4.3.1 Parameters

This section determines the parameters that need to be tuned. We first review the removal parameters. Shaw
removal is controlled by five parameters:ϕ, χ, ψ, ω and p, while the worst removal is controlled by one
parameterpworst. Random removal has no parameters. The insertion heuristics are parameter free when we
have chosen the regret degree.

In order to control the acceptance criteria we use two parameters,w andc. The weight adjustment algorithm
is controlled by four parameters,σ1, σ2, σ3 andr. Finally we have to determine a noise rateη and a parameter
ξ that controls how many requests we remove in each iteration.In each iteration, we chose a random numberρ
that satisfies 4≤ ρ ≤ min(100,ξn), and removeρ requests.

We stop the search after 25000 LNS iterations as this resulted in a fair trade-off between time and quality.

4.3.2 LNS parameter tuning

Despite the large number of parameters used in the LNS heuristic, it turns out that it is relatively easy to find
a set of parameters that works well for a large range of problems. We use the following strategy for tuning the
parameters: first a fair parameter setting is produced by an ad-hoc trial-and-error phase, this parameter setting
was found while developing the heuristic. This parameter setting is improved in the second phase by allowing
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one parameter to take a number of values, while the rest of theparameters are kept fixed. For each parameter
setting we apply the heuristic on our set of test problems fivetimes, and the setting that shows the best average
behavior (in terms of average deviation from the best known solutions) is chosen. We now move on to the
next parameter, using the values found so far and the values from the initial tuning for the parameters that have
not been considered yet. This process continues until all parameters have been tuned. Although it would be
possible to process the parameters once again using the new set of parameters as a starting point to further
optimize the parameters, we stopped after one pass.

One of the experiments performed during the parameter tuning sought to determine the value of the parame-
ter ξ that controls how many requests we remove and insert in each iteration. This parameter should intuitively
have a significant impact on the results our heuristic is ableto produce. We tested the heuristic withξ ranging
from 0.05 to 0.5 with a step size of 0.05. Table 2 shows the influence ofξ. Whenξ is too low the heuristic
is not able to move very far in each iteration, and it has a higher chance of being trapped in one suboptimal
area of the search space. On the other hand, ifξ is large then we can easily move around in the search space,
but we are stretching the capabilities of our insertion heuristics. The insertion heuristics work fairly well when
they must insert a limited number of requests into a partial solution, but they cannot build a good solution from
scratch as seen in Section 4.2. The results in Table 2 shows that ξ = 0.4 is a good choice. One must notice that
the heuristic gets slower whenξ increases because the removals and insertions take longer when more requests
are involved, thus the comparison in Table 2 is not completely fair.

ξ 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Avg. gap (%) 1.75 1.65 1.21 0.97 0.81 0.71 0.81 0.49 0.57 0.57

Table 2: Parameterξ vs. solution quality. The first row shows the values of the parameterξ that were tested and the
second row shows the gap between the average solution obtained and the best solutions produced in the experiment.

The complete parameter tuning resulted in the following parameter vector (ϕ, χ, ψ, ω, p, pworst, w, c, σ1,
σ2,σ3, r, η, ξ) = (9, 3, 2, 5, 6, 3, 0.05, 0.99975, 33, 9, 13, 0.1, 0.025, 0.4).Our experiments also indicated
that it was possible to improve the performance of the vehicle minimization algorithm by setting (w, c) = (0.35,
0.9999) while searching for solutions that serve all requests. This corresponds to a higher start temperature and
a slower cooling rate. This indicates that more diversification is needed when trying to minimize the number of
vehicles, compared to the situation where one just minimizes the traveled distance.

In order to tune the parameters we start from an initial guess, and then tune one parameter at a time. When
all parameters are tuned, the process is repeated. In this way the calibration order plays a minor order. Although
the parameter tuning is quite time consuming, it could easily be automated. In our subsequent papers [20, 16]
where 11 variants of the vehicle routing problem are solved using the heuristic proposed in this paper we only
re-tuned a few parameters and obtained very convincing results, so it seems that a complete tuning of the
parameters only needs to be done once.

4.3.3 LNS configurations

This section evaluates how the different removal and insertion heuristics behave when used in a LNS heuristic.
In most of the test cases a simple LNS heuristic was used that only involved one removal heuristic and one
insertion heuristic. Table 3 shows a summary of this experiment.

The first six experiments aim at determining the influence of the removal heuristic. We see that Shaw
removal performs best, the worst removal heuristic is second, and the random removal heuristic gives the worst
performance. This is reassuring as it shows that the two slightly more complicated removal heuristics actually
are better than the simplest removal heuristic. These results also illustrate that the removal heuristic can have
a rather large impact on the solution quality obtained, thusexperimenting with other removal heuristics would
be interesting and could prove beneficial.

The next eight experiments show the performance of the insertion heuristics. Here we have chosen Shaw
removal as removal heuristic because it performed best in the previous experiments. In these experiments
we see that all insertion heuristics perform quite well, andthey are quite hard to distinguish from each other.
Regret-3 and Regret-4 coupled with noise addition are slightly better than the rest though. An observation that
applies to all experiments is that application of noise seems to help the heuristic. It is interesting to note that the
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Conf. Shaw Rand Worst Reg-1 Reg-2 Reg-3 Reg-4 Reg-m Noise Avg. gap (%)

1 • • 2.7
2 • • • 2.6
3 • • 5.4
4 • • • 3.2
5 • • 2.0
6 • • • 1.6

LNS 7 • • 2.2
8 • • • 1.6
9 • • 1.8
10 • • • 1.3
11 • • 2.0
12 • • • 1.3
13 • • 1.8
14 • • • 1.7

ALNS 15 • • • • • • • • • 1.3

Table 3: Simple LNS heuristics compared to the full adaptive LNS withdynamic weight adjustment. The first column
shows if the configuration must be considered as an LNS or an ALNS heuristic. The second column is the configuration
number, columns three to five indicate which removal heuristics were used. Columns six to ten indicate which insertion
heuristics were used. Column eleven states if noise was added to the objective function during insertion of requests (in
this case noise was added to the objective function in 50% of the insertions for the simple configurations 1-14 while
in configuration 15 the number of noise-insertions was controlled by the adaptive method). Column twelve shows the
average performance of the different heuristics. As an example, in configuration four we used random removal together
with the regret-2 insertion heuristic and we applied noise to the objective value. This resulted in a set of solutions whose
objective values on average were 3.2% above the best solutions found during the whole experiment.

basic insertion heuristic nearly performs as well as the regret heuristics when used in a LNS framework. This
is surprising seen in the light of Table 1 where the basic insertion heuristic performed particularly badly. This
observation may indicate that the LNS method is relatively robust with respect to the insertion method used.

The last row of the table shows the performance of ALNS. As onecan see, it is on par with the two best
simple approaches, but not better, which at first may seem disappointing. The results show though, that the
adaptive mechanism is able to find a sensible set of weights, and it is our hypothesis that the ALNS heuristic
is more robust than the simpler LNS heuristics. That is, the simple configuration may fail to produce good
solutions on other types of problems, while the ALNS heuristic continues to perform well. One of the purposes
of the experiments in Section 4.4 is to confirm or disprove this hypothesis.

4.4 Results

This section provides computational experiments conducted to test the performance of the heuristic. There are
three major objectives for this section:

1. To compare the ALNS heuristic to a simple LNS heuristic that only contains one removal and one inser-
tion heuristic.

2. To determine if certain problem properties influence the (A)LNS heuristics ability to find good solutions.

3. To compare the ALNS heuristic with state-of-the-art PDPTW heuristics from the literature.

In order to clarify if the ALNS heuristic is worthwhile compared to a simpler LNS heuristic we are going to
show results for both the ALNS heuristic and the best simple LNS heuristic from Table 3. Configuration 12
was chosen as representative for the simple LNS heuristics as it performed slightly better than configuration
10. In the following sections we refer to the full and simple LNS heuristic as ALNS and LNS respectively.

All experiments were performed on a 1.5 GHz Pentium IV PC with256 MB internal memory, running
Linux. The implemented algorithm measures travel times anddistances using double precision floating point
numbers. The parameter setting found in Section 4.3.2 was used in all experiments unless otherwise stated.
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4.4.1 Data sets

As the model considered in this paper is quite complicated, it is hard to find any benchmark instances that
consider exactly the same model and objective function. Thebenchmark instances that come closest to the
model considered in this paper are the instances constructed by Nanry and Barnes [15] and the instances con-
structed by Li and Lim [11]. Both data sets are single depot pickup and delivery problems with time windows,
constructed from VRPTW problems. We are only reporting results on the data set proposed by Li and Lim, as
the Nanry and Barnes instances are easy to solve due to their size.

The problem considered by Li and Lim were simpler than the oneconsidered in this paper as: 1) it did not
contain multiple depots; 2) all requests must be served; 3) all vehicles were assumed to be able to serve all
requests. When solving the Li and Lim instances using the ALNS heuristic we setα to one andβ to zero in our
objective function. In section 4.5 we minimize the number ofvehicles as first priority while we in section 4.4.2
only minimize the distance driven.

In order to test all aspects of the model proposed in this paper, we also introduce some new, randomly
generated instances. These instances are described in section 4.4.3.

4.4.2 Comparing ALNS and LNS using the Li & Lim instances

This section compares the ALNS and LNS heuristics using the benchmark instances proposed by Li and Lim
[11]. The data set contains 354 instances with between 100 and 1000 locations. The data set can be downloaded
from [25].

In this section we use the distance driven as our objective even though vehicle minimization is the standard
primary objective for these instances. The reason for this decision is that distance minimization makes compar-
ison of the heuristics easier and distance minimization is the original objective of the proposed heuristic. The
number of vehicles available for serving the requests is setto the minimum values reported by Li and Lim in
[11] and on their web page which unfortunately no longer is on-line.

The heuristics were applied 10 times to each instance with 400 or less locations and 5 times to each instance
with more than 400 locations. The experiments are summarized in Table 4.

Best known solutions Avg. gap (%) Average time (s) Fails
#locations #problems ALNS LNS ALNS LNS ALNS LNS ALNS LNS

100 56 52 50 0.19 0.50 49 55 0 0
200 60 49 15 0.72 1.41 305 314 0 0
400 60 52 6 2.36 4.29 585 752 0 0
600 60 54 5 0.93 3.20 1069 1470 0 0
800 60 46 5 1.73 3.27 2025 3051 0 2

1000 58 47 4 2.26 4.22 2916 5252 0 1

Table 4: Summary of results obtained on Li and Lim instances [11]. Thefirst column gives the problem size; the next
column indicates the number of problems in the data set of theparticular size. The rest of the table consists of four major
columns, each divided into two sub columns, one for the ALNS and one for LNS. The columnBest known solutions
indicates for how many problems the best known solution was identified. The best known solution is either the solution
reported by Li and Lim or the best solution identified by the (A)LNS heuristics depending on which is best. The next
column indicates how far the average solution is from best known solution. This number is averaged over all problems of
a particular size. The next column shows how long the heuristic on average spends to solve a problem. The last column
shows the number of times the heuristic failed to find a solution where all request are served by the given number of
vehicles in all the attempts to solve a particular problem.

The results show that the ALNS heuristic on all four terms performs better than the LNS heuristic. One also
notices that the ALNS heuristic becomes even more attractive as the problem size increases. It may seem odd
that the LNS heuristic spends more time compared to the ALNS heuristic when they both perform the same
number of LNS iterations. The reason for this behavior is that the Shaw removal heuristic used by the LNS
heuristic is more time consuming compared to the two other removal heuristics.
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4.4.3 New instances

This section provides results on randomly generated PDPTW instances that contain features of the model that
were not used in the Li and Lim benchmark problems consideredin Section 4.4.2. These features are: multiple
depots, routes with different start and end terminals andspecialrequests that only can be served by a certain
subset of the vehicles. When solving these instances we setα = β = 1 in the objective function so that distance
and time are weighted equally in the objective function. We do not perform vehicle minimization as the vehicles
are inhomogeneous.

Three types of geographical distributions of requests are considered: problems with locations distributed
uniformly in the plane, problems with locations distributed in 10 clusters and problems with 50% of the loca-
tions are put in 10 clusters and 50% of the locations distributed uniformly. These three types of problems were
inspired by Solomon’s VRPTW benchmark problems [26], and the problems are similar to the R, the C and the
RC Solomon problems respectively. We consider problems with 50, 100, 250 and 500 requests, all problems
are multi depot problems. For each problem size we generated12 problems as we tried every combination of
the three problem features shown below:

• Route type: 1) A route starts and ends at the same location, 2)a route starts and ends at different locations.

• Request type: 1) All requests are normal requests, 2) 50% of the requests arespecial requests. The
special requests can only be served by a subset of the vehicles. In the test problems each special request
could only be served by between 30% to 60% of the vehicles.

• Geographical distributions: 1) Uniform, 2) Clustered, 3) Semi-clustered.

The instances can be downloaded from www.diku.dk/~sropke.The heuristics were tested by applying them to
each of the 48 problems 10 times. Table 5 shows a summary of theresults found. In the table we list for how
many problems the two heuristics find the best known solution. The best known solution is simply the best
solution found throughout this experiment.

We observe the same tendencies as in Table 4; ALNS is still superior to LNS, but one notices that the gap
in solution quality between the two methods are smaller for this set of instances while the difference in running
time is larger compared to the results on the Li and Lim instances. One also notices that it seems harder to solve
small instances of this problem class compared to the Li and Lim instances.

Best known solutions Avg. gap (%) Average time (s)
#requests #problems ALNS LNS ALNS LNS ALNS LNS

50 12 8 5 1.44 1.86 23 34
100 12 11 1 1.54 2.18 83 142
250 12 7 5 1.39 1.62 577 1274
500 12 9 3 1.18 1.32 3805 8146

Sum: 48 35 14 5.55 6.98 4488 9596

Table 5: Summary of results obtained on new instances. The captions of the table should be interpreted as in Table 4.
The last row sums each column. Notice that the size of the problems in this table is given as number of requests and not
the number of locations.

Table 6 summarizes how the problem features influence the average solution quality. These results show that
the clustered problems are the hardest to solve, while the uniformly distributed instances are the easiest. The
results also indicate that special requests make the problem slightly harder to solve. The route type experiments
compare the situation where routes start and end at the same location (the typical situation considered in the
literature) to the situation where each route starts and ends at different locations. Here we expect the last case to
be the easiest to solve, as we by having different start and end positions for our routes, gain information about
the area the route most likely should cover. The results in Table 6 confirm these expectations.

In addition to investigate the question of how the model features influence the average solution quality
obtained by the heuristics we also want to know if the presence of some features could make LNS behave better
than ALNS. For the considered features the answer is negative.
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Feature ALNS LNS
Distribution: Uniform 1.04% 1.50%
Distribution: Clustered 1.89% 2.09%
Distribution: Semi-clustered 1.23% 1.64%
Normal Requests 1.24% 1.47%
Special Requests 1.54% 2.02%
Start of route = end of route 1.59% 2.04%
Start of route6= end of route 1.19% 1.45%

Table 6: Summary of the influence of certain problem features on the heuristic solutions. The two columns correspond
to the two heuristic configurations. Each row shows the average solution quality for each feature. The average solution
quality is defined as the average of the average gap for all instances with a specific feature. To be more precise, the

solution quality is calculated using the formula:q(h) = 1
|F | ∑i∈F

(

1
10 ∑10

j=1
c(i, j ,h)−c′(i)

c′(i)

)

whereF is the set of instances

with a specific feature,c′(i) is the cost of the best known solution to instancei andc(i, j,h) is the cost obtained in thejth
experiment on instancei using heuristich.

4.5 Comparison to existing heuristics

This section compares the ALNS heuristics to existing heuristics for the PDPTW. The comparison is performed
using the benchmark instances proposed by Li and Lim [11] that also were used in Section 4.4.2. When PDPTW
problems have been solved in the literature, the primary objective has been to minimize the number of vehicles
used while the secondary objective has been to minimize the traveled distance. For this purpose we use the
vehicle minimization algorithm described in Section 3.7. The ALNS heuristic was applied 10 times to each
instance with 200 or less locations and 5 times to each instance with more than 200 locations. The experiments
are summarized in Tables 7, 8 and 9. It should be noted that it was necessary to decrease thew parameter and
increase thec parameter when the instances with 1000 locations were solved in order to get reasonable solution
quality. Apart from that, the same parameter setting has been used for all instances.

In the literature, four heuristics have been applied to the benchmark problems: the heuristic by Li and
Lim [11], the heuristic by Bent and Van Hentenryck [2] and twocommercial heuristics; a heuristic developed
by SINTEF and a heuristic developed by TetraSoft A/S. Detailed results for the two last heuristics are not
available but some results obtained using these heuristicscan be found on a web page maintained by SINTEF
[25]. The heuristic that has obtained the best overall solution quality so far is probably the one by Bent and
Van Hentenryck [2] (shortened BH heuristic in the following), therefore the ALNS heuristic is compared to
this heuristic in Table 7. The complete results from the BH heuristic can be found in [3]. The results given
for the BH heuristic are the best obtained among 10 experiments (though for the 100 location instances only 5
experiments were performed). TheAvg. TTBcolumn shows the average time needed for the BH heuristic to
obtain its best solution. For the ALNS heuristic we only listthe time used in total as this heuristic - because of
its simulated annealing component, the heuristic usually finds its best solution towards the end of the search.
The BH heuristic was tested on a 1.2 GHz Athlon processor and the running times of the two heuristics should
therefore be comparable (we believe that the Athlon processor is at most 20% slower than our computer).
The results show that the ALNS heuristic overall dominates the BH heuristic, especially as the problem sizes
increase. It is also clear that the ALNS heuristic is able to improve considerably on the previously best known
solutions and that the vehicle minimization algorithm works very well despite its simplicity. The last two
columns in Table 7 summarize the best results obtained usingseveral experiments with different parameter
settings, which show that the results obtained by ALNS actually can be improved even further.

Table 8 compares the results obtained by ALNS with the best known solutions from the literature. It can be
seen that ALNS improves more than half of the solutions and achieves a solution that is at least as good as the
previously best known solution for 80% of the problems.

The two afore mentioned tables only dealt with the best solutions found by the ALNS heuristic. Table
9 shows the average solution quality obtained by the heuristic. These numbers can be compared to those in
Table 7. It is worth noticing that the average solution sometimes have a lower distance than the “best of 10
or 5” solution in table 7, this is the case in the last row. Thisis possible because the heuristic finds solutions
that use more than the minimum number of vehicles and this usually makes solutions with shorter distances
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Best known 2003 BH best ALNS best of 10 or 5 ALNS best

#locations #veh. Dist #veh. Dist Avg. TTB Avg. time #veh. Dist Avg. time #veh. Dist

100 402 58060 402 58062 68 3900 402 58060 66 402 56060

200 615 178380 614 180358 772 3900 606 180931 264 606 180419

400 1183 421215 1188 423636 2581 6000 1158 422201 881 1157 420396

600 1699 873850 1718 879940 3376 6000 1679 863442 2221 1664 860898

800 2213 1492200 2245 1480767 5878 8100 2208 1432078 3918 2181 1423063

1000 2698 2195755 2759 2225190 6174 8100 2652 2137034 5370 2646 2122922

Table 7: This table compares the ALNS heuristic to existing heuristics using the Li and Lim benchmark instances.
Each row in the table corresponds to a set of problems with thesame number of locations. Each of these problem sets
contain between 56 and 60 instances (see Table 8). The first column indicates the number of locations in each problem;
the next two columns give the total number of vehicles used and the total distance traveled in the previously best known
solutions as listed on the SINTEF web page [25] in the summer of 2003. The next four columns show information about
the solutions obtained by Bent and Van Hentenryck’s heuristic [2]. The two columnsAvg. TTBandAvg. timeshow the
average time needed to reach the best solution and the average time spent on each instance, respectively. Both columns
report the time needed to perform one experiment on one instance. The next three columns report the solutions obtained in
the experiment with the ALNS heuristic where the heuristic was applied either 5 or 10 times to each problem. The last two
columns report the best solutions obtained in several experiments with our ALNS heuristic and with various parameter
settings. Note that Bent and Van Hentenryck in some cases have found slightly better results than reported on the SINTEF
web page in 2003. This is the reason why the number of vehiclesused by the BH heuristic for the 200 locations problems
is smaller than in the best known solutions.

possible.
Overall, one can conclude that the ALNS heuristic must be considered as a state of the art heuristic for the

PDPTW. The cost of the best solutions identified during the experiments are listed in Tables 10 to 15.

4.6 Computational tests conclusion

In Section 4.4 we stated three objectives for our computational experiments. The tests fulfilled these objectives
as we saw that: 1) the adaptive LNS heuristic that combines several removal and construction heuristics displays
superior performance compared to the simple LNS heuristic that only uses one insertion heuristic and one
removal heuristic; 2) certain problem characteristics influence the performance of the LNS heuristic but we did
not find that any characteristics could make the LNS heuristic perform better than the ALNS heuristic; 3) the
LNS heuristic indeed is able to find good quality solutions ina reasonable amount of time, and the heuristic
outperforms previously proposed heuristics.

The experiments also illustrate the importance of testing heuristics on large sets of problem instances as the

ALNS best of 10 or 5 ALNS best
#locations #problems <PB ≤PB <PB ≤PB

100 56 0 54 0 55
200 60 22 42 27 57
400 60 40 47 41 55
600 60 41 45 51 57
800 60 37 42 48 53

1000 58 50 54 51 55

Table 8: Comparison of the ALNS heuristic to the previously best known solutions. The table is grouped by problem
size. The first column shows the problem size, the next columnshows the number of problems of that size. The next
two columns give additional information about the experiment where the ALNS heuristic was applied 5 or 10 times to
each instance. The columns<PB report how many times the best solution found by the ALNS heuristic was strictly better
than the previously best known solution. The columns≤PBshow how many times the best solution found by ALNS was
at least as good as the previously best known solution. The last two columns show information about the best solutions
obtained during experimentation with different parametersettings.
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#locations Avg. #veh. Avg. Dist
100 403 58249
200 608 181707
400 1168 425817
600 1686 867930
800 2223 1432321

1000 2677 2129032

Table 9: The ALNS heuristic was applied 10 times to each problem with 200 or less locations and 5 times to each
problem with more than 200 locations. The best solutions reported in Table 7 and 8 were of course not obtained in all
experiments. This table shows the average number of vehicles and average distance traveled obtained. These numbers
can be compared to the figures in Table 7

R1 R2 C1 C2 RC1 RC2

1 19 1650.80 4 1253.23 10 828.94 3 591.56 14 1708.80 4 1406.94
2 17 1487.57 3 1197.67 10 828.94 3 591.56 12 1558.07 3 1374.27
3 13 1292.68 3 949.40 9 1035.35 3 591.17 11 1258.74 3 1089.07
4 9 1013.39 2 849.05 9 860.01 3 590.60 10 1128.40 3 818.66
5 14 1377.11 3 1054.02 10 828.94 3 588.88 13 1637.62 4 1302.20
6 12 1252.62 3 931.63 10 828.94 3 588.49 11 1424.73 3 1159.03
7 10 1111.31 2 903.06 10 828.94 3 588.29 11 1230.14 3 1062.05
8 9 968.97 2 734.85 10 826.44 3 588.32 10 1147.43 3 852.76
9 11 1208.96 3 930.59 9 1000.60

10 10 1159.35 3 964.22
11 10 1108.90 2 911.52
12 9 1003.77

Table 10: Best results, 100 locations. The Li and Lim benchmark instances are divided into six sets: R1, R2, C1, C2,
RC1 and RC2. Each of the major columns corresponds to one of these sets, the column at the left give the problem number.
For each problem instance we report the number of vehicles and the distance traveled in the best solution obtained during
experimentation. Bold numbers indicate best known solutions.

R1 R2 C1 C2 RC1 RC2
1 20 4819.12 5 4073.10 20 2704.57 6 1931.44 19 3606.06 6 3605.40
2 17 4621.21 4 3796.00 19 2764.56 6 1881.40 15 3674.80 5 3327.18
3 15 3612.64 4 3098.36 17 3128.61 6 1844.33 13 3178.17 4 2938.28
4 10 3037.38 3 2486.14 17 2693.41 6 1767.12 10 2631.82 3 2887.97
5 16 4760.18 4 3438.39 20 2702.05 6 1891.21 16 3715.81 5 2776.93
6 14 4178.24 4 3201.54 20 2701.04 6 1857.78 17 3368.66 5 2707.96
7 12 3550.61 3 3135.05 20 2701.04 6 1850.13 14 3668.39 4 3056.09
8 9 2784.53 2 2555.40 20 2689.83 6 1824.34 13 3174.55 4 2399.95
9 14 4354.66 3 3930.49 18 2724.24 6 1854.21 13 3226.72 4 2208.49

10 11 3714.16 3 3344.08 17 2943.49 6 1817.45 12 2951.29 3 2550.56

Table 11: Best results, 200 locations.
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R1 R2 C1 C2 RC1 RC2

1 40 10639.75 8 9758.46 40 7152.06 12 4116.33 36 9127.15 12 7471.01
2 31 10015.85 7 9496.64 38 8012.43 12 4144.29 31 8346.06 11 6303.36
3 23 8840.46 6 8116.53 33 8308.94 12 4431.75 25 7387.40 9 5438.20
4 16 6744.33 4 6649.78 30 6878.00 12 4038.00 19 5838.58 5 5322.43
5 29 10599.54 7 8574.84 40 7150.00 12 4030.63 33 8773.75 11 6120.13
6 25 9525.45 6 7995.06 40 7154.02 12 3900.29 31 8177.90 9 6479.56
7 19 8200.37 5 6928.61 40 7149.43 12 3962.51 29 7992.08 8 6361.26
8 14 5946.44 4 5447.40 39 7111.16 12 3844.45 27 7613.43 7 5928.93
9 24 9886.14 6 8043.20 36 7452.21 12 4188.93 26 8013.48 7 5303.53

10 21 8016.62 5 7904.77 35 7387.13 12 3828.44 24 7065.73 6 5760.78

Table 12: Best results, 400 locations.

R1 R2 C1 C2 RC1 RC2

1 59 22838.65 11 21945.30 60 14095.64 19 7977.98 53 17924.88 16 14817.72
2 45 20246.18 10 19666.59 58 14379.53 18 10277.23 44 16302.54 14 12758.77
3 37 18073.14 8 15609.96 50 14683.43 17 8728.30 36 14060.31 10 12812.67
4 28 13269.71 6 10819.45 47 13648.03 17 8041.97 25 10950.52 7 10574.87
5 38 22562.81 9 19567.41 60 14086.30 19 8047.37 47 16742.55 14 13009.52
6 32 20641.02 8 17262.96 60 14090.79 19 8094.11 44 16894.37 13 12643.98
7 25 17162.90 6 15812.42 60 14083.76 19 7998.18 39 15394.87 11 12007.65
8 19 11957.59 5 10950.90 59 14554.27 18 7579.93 36 15154.79 10 12163.43
9 32 21423.05 8 18799.36 54 14706.12 18 9501.00 35 15134.24 9 13768.01

10 27 18723.13 7 17034.63 53 14879.30 17 8019.94 31 13925.51 8 12016.94

Table 13: Best results, 600 locations.

R1 R2 C1 C2 RC1 RC2

1 80 39315.92 15 33816.90 80 25184.38 24 11687.06 67 32268.95 20 23289.40
2 59 34370.37 12 32575.97 78 26062.17 24 14358.92 57 28395.39 18 21786.62
3 44 29718.09 10 25310.53 65 25918.45 24 13198.29 50 24354.36 16 16586.31
4 25 21197.65 7 19506.42 60 22970.88 23 13376.82 35 18241.91 12 14122.05
5 50 39046.06 12 32634.29 80 25211.22 25 12329.80 61 30995.48 18 20292.92
6 42 33659.50 10 27870.80 80 25164.25 24 12702.87 58 28568.61 16 21088.57
7 32 27294.19 8 25077.85 80 25158.38 25 11855.86 54 28164.41 15 19695.96
8 21 19570.21 5 19256.79 78 25348.45 24 11482.88 49 26150.65 13 19009.33
9 42 36126.69 10 30791.77 73 25541.94 24 11629.61 47 24930.70 12 19003.68

10 32 30200.86 9 28265.24 71 25712.12 24 11578.58 42 24271.52 10 19766.78

Table 14: Best results, 800 locations.
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R1 R2 C1 C2 RC1 RC2

1 100 56903.88 19 45422.58 100 42488.66 30 16879.24 85 48702.83 22 35073.70
2 80 49652.10 15 47824.44 95 43870.19 31 18980.98 73 45135.70 21 30932.74
3 54 42124.44 11 39894.32 82 42631.11 30 17772.49 55 35475.72 16 28403.51
4 28 32133.36 8 28314.95 74 39443.00 29 18089.93 40 27747.04 12 23083.20
5 61 59135.86 14 53209.98 100 42477.41 31 17137.53 76 49816.18 18 34713.96
6 50 48637.63 12 43792.11 101 42838.39 31 17198.01 69 44469.08 17 31485.26
7 37 38936.54 9 36728.20 100 42854.99 31 19117.67 64 41413.16 17 29639.63
8 26 29452.32 7 26278.09 98 42951.56 30 17018.63 60 40590.17 - -
9 50 52223.15 13 48447.49 92 42391.98 31 17565.95 57 39587.85 - -

10 40 46218.35 11 44155.66 90 42435.16 29 17425.55 52 36195.00 12 29402.90

Table 15: Best results, 1000 locations. Two entries are missing as thecorresponding problem instances no longer exist.

difference between LNS and ALNS only really becomes apparent when we consider large instances. Note that
the problems that need to be solved in the real world often have dimensions comparable to or greater than the
biggest problems solved in this paper.

Finally the computational experiments performed in Section 4.3.3 indicated that a simple LNS heuristic
seems to be more sensitive to the choices of removal heuristic compared to the choices of insertion heuristics.
It would be interesting to see if this holds in general for other problems as well.

5 Conclusion

This paper presented an extension to the large neighborhoodsearch and the ruin and recreate heuristic called
adaptive LNS. The heuristic was tested on the pickup and delivery problem with time windows achieving good
results in a reasonable amount of time. The idea of combiningseveral sub heuristics in the same search proved
to be successful.

As the proposed model is quite general would be interesting to examine if the model and heuristic can be
used to solve other vehicle routing problems. We are currently working on this topic and the results are very
promising as the heuristic has been able to discover new bestsolutions to standard benchmarks for vehicle rout-
ing problems with time windows and multi-depot vehicle routing problems and other vehicle routing problems
[16], [20].

It would also be interesting to apply the ideas presented in this paper to other combinatorial optimization
problems. The adaptive LNS framework is easily applicable to most problems, taking advantage of the numer-
ous robust and fast construction heuristics designed during the last decades for various optimization problems.
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7 Appendix

Tables 16 to 21 show detailed information about the solutions found during the experiment described in Section
4.5.
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Best known FULL LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR101 19 1650.8 LL 1650.80 19.0 1650.80 19 40 19 1650.80
LR102 17 1487.57 LL 1487.57 17.0 1487.57 17 47 17 1487.57
LR103 13 1292.68 LL 1292.68 13.0 1292.68 13 45 13 1292.68
LR104 9 1013.39 LL 1013.39 9.0 1013.39 9 26 9 1013.39
LR105 14 1377.11 LL 1377.11 14.0 1377.11 14 40 14 1377.11
LR106 12 1252.62 LL 1252.62 12.0 1252.62 12 41 12 1252.62
LR107 10 1111.31 LL 1111.31 10.0 1111.31 10 44 10 1111.31
LR108 9 968.97 LL 968.97 9.0 968.97 9 25 9 968.97
LR109 11 1208.96 SAM 1208.96 11.0 1208.96 11 41 11 1208.96
LR110 10 1159.35 LL 1159.35 10.0 1159.35 10 35 10 1159.35
LR111 10 1108.9 LL 1108.90 10.0 1108.90 10 44 10 1108.90
LR112 9 1003.77 LL 1003.77 9.0 1003.77 9 27 9 1003.77
LC101 10 828.94 LL 828.94 10.0 828.94 10 43 10 828.94
LC102 10 828.94 LL 828.94 10.0 828.94 10 44 10 828.94
LC103 9 1035.35 BH 1037.77 9.0 1035.35 9 49 9 1035.35
LC104 9 860.01 SAM 860.15 9.0 860.01 9 63 9 860.01
LC105 10 828.94 LL 828.94 10.0 828.94 10 41 10 828.94
LC106 10 828.94 LL 828.94 10.0 828.94 10 42 10 828.94
LC107 10 828.94 LL 828.94 10.0 828.94 10 43 10 828.94
LC108 10 826.44 LL 826.44 10.0 826.44 10 46 10 826.44
LC109 9 1000.6 BH 1000.60 9.0 1000.60 9 35 9 1000.60
LRC101 14 1708.8 LL 1708.80 14.0 1708.80 14 38 14 1708.80
LRC102 12 1558.07 SAM 1558.07 12.0 1558.07 12 41 12 1558.07
LRC103 11 1258.74 LL 1258.74 11.0 1258.74 11 43 11 1258.74
LRC104 10 1128.4 LL 1128.40 10.0 1128.40 10 52 10 1128.40
LRC105 13 1637.62 LL 1637.62 13.0 1637.62 13 42 13 1637.62
LRC106 11 1424.73 SAM 1424.73 11.0 1424.73 11 42 11 1424.73
LRC107 11 1230.15 LL 1230.14 11.0 1230.14 11 43 11 1230.14
LRC108 10 1147.43 SAM 1147.43 10.0 1147.43 10 25 10 1147.43
LR201 4 1253.23 SAM 1253.23 4.0 1253.23 4 69 4 1253.23
LR202 3 1197.67 LL 1197.67 3.0 1197.67 3 60 3 1197.67
LR203 3 949.4 LL 949.40 3.0 949.40 3 98 3 949.40
LR204 2 849.05 LL 849.05 2.0 849.05 2 181 2 849.05
LR205 3 1054.02 LL 1054.02 3.0 1054.02 3 58 3 1054.02
LR206 3 931.63 LL 931.63 3.0 931.63 3 86 3 931.63
LR207 2 903.06 LL 903.06 2.0 903.06 2 187 2 903.06
LR208 2 734.85 LL 734.85 2.0 734.85 2 285 2 734.85
LR209 3 930.59 SAM 930.59 3.0 930.59 3 73 3 930.59
LR210 3 964.22 LL 964.22 3.0 964.22 3 77 3 964.22
LR211 2 911.52 SAM 906.69 2.2 911.52 2 126 2 911.52
LC201 3 591.56 LL 591.56 3.0 591.56 3 36 3 591.56
LC202 3 591.56 LL 591.56 3.0 591.56 3 59 3 591.56
LC203 3 585.56 LL 591.17 3.0 591.17 3 81 3 591.17
LC204 3 590.6 SAM 590.60 3.0 590.60 3 141 3 590.60
LC205 3 588.88 LL 588.88 3.0 588.88 3 48 3 588.88
LC206 3 588.49 LL 588.49 3.0 588.49 3 60 3 588.49
LC207 3 588.29 LL 588.29 3.0 588.29 3 62 3 588.29
LC208 3 588.32 LL 588.32 3.0 588.32 3 69 3 588.32
LRC201 4 1406.94 SAM 1406.94 4.0 1406.94 4 38 4 1406.94
LRC202 3 1374.27 LL 1387.74 3.8 1374.79 3 82 3 1374.27
LRC203 3 1089.07 SAM 1089.07 3.0 1089.07 3 69 3 1089.07
LRC204 3 818.66 SAM 818.66 3.0 818.66 3 173 3 818.66
LRC205 4 1302.2 LL 1302.20 4.0 1302.20 4 75 4 1302.20
LRC206 3 1159.03 SAM 1337.75 3.0 1159.03 3 48 3 1159.03
LRC207 3 1062.05 SAM 1062.05 3.0 1062.05 3 66 3 1062.05
LRC208 3 852.76 LL 852.76 3.0 852.76 3 88 3 852.76
Tot. 402 58054 58249.42 403.00 58060.03 402 3680 402 58059.50
Avg. 66
< PB 1 1
<= PB 54 55
#B 55 54 55

Table 16: Results on 100-customer problems solved with vehicle minimization as primary objective. The first column
contains the name of the problem, columns two to four show information about the previously best known solutions.
Columns two and three give the number of vehicles in the solution and the total traveled distance. Column four refers to
the method that first found the solution (LL: Li and Lim [11], BH: Bent and Van Hentenryck [2], SAM: SINTEF heuristic,
TS: TetraSoft A/S heuristic). The next five columns show information about the solutions obtained by the ALNS LNS
heuristic. The first two of these columns show the average distance traveled and the average number of vehicles (averaged
over the 10 experiments performed). The two next column display the the best solution obtained in the 10 experiments.
The columnavg. timedisplays the average time needed to perform one experiment in seconds. The two last columns
show the best results obtained during experimentation withvarious parameter settings. The last 5 columns provide some
summary information. TheTot. andAvg. rows respectively sums and averages entries in the columns.The <PB row
indicates how many solutions that are better than the previously best known solution and the<=PB row indicates how
many solution that are at least as good as the previously bestknown solution.#B reports the number of overall best known
solutions that were obtained. Best known solutions are marked with bold font.
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Best known FULL LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR1_2_1 20 4819.12 LL 4819.12 20.0 4819.12 20 137 20 4819.12
LR1_2_2 17 4666.09 BH 4625.99 17.0 4621.21 17 149 17 4621.21
LR1_2_3 15 3612.64 TS 3626.13 15.0 3612.64 15 173 15 3612.64
LR1_2_4 10 3146.06 BH 3088.07 10.0 3058.12 10 228 10 3037.38
LR1_2_5 16 4760.18 BH 4852.41 16.0 4760.18 16 136 16 4760.18
LR1_2_6 14 4175.16 BH 4261.23 14.0 4184.80 14 164 14 4178.24
LR1_2_7 12 3851.36 BH 3580.94 12.0 3551.47 12 173 12 3550.61
LR1_2_8 9 2871.67 BH 2823.91 9.0 2784.53 9 226 9 2784.53
LR1_2_9 14 4411.54 BH 4438.36 14.0 4354.66 14 144 14 4354.66
LR1_2_10 11 3744.95 BH 3787.23 11.0 3741.29 11 146 11 3714.16
LRC1_2_1 19 3606.06 SAM 3606.06 19.0 3606.06 19 136 19 3606.06
LRC1_2_2 15 3681.36 BH 3684.82 15.0 3674.80 15 143 15 3674.80
LRC1_2_3 13 3161.75 BH 3211.85 13.0 3178.17 13 183 13 3178.17
LRC1_2_4 10 2655.27 BH 2660.26 10.0 2641.67 10 284 10 2631.82
LRC1_2_5 16 3715.81 BH 3718.57 16.0 3716.72 16 141 16 3715.81
LRC1_2_6 17 3368.66 SAM 3372.68 17.0 3368.74 17 141 17 3368.66
LRC1_2_7 15 3417.16 BH 3525.21 14.7 3668.39 14 140 14 3668.39
LRC1_2_8 14 3087.62 BH 3220.69 13.2 3174.55 13 144 13 3174.55
LRC1_2_9 14 3129.65 BH 3259.40 13.1 3226.72 13 140 13 3226.72
LRC1_2_10 13 2833.85 BH 2968.69 12.1 2967.70 12 156 12 2951.29
LC1_2_1 20 2704.57 LL 2704.57 20.0 2704.57 20 146 20 2704.57
LC1_2_2 19 2764.56 LL 2764.56 19.0 2764.56 19 141 19 2764.56
LC1_2_3 17 3134.08 BH 3142.99 17.0 3136.42 17 155 17 3128.61
LC1_2_4 17 2698.73 TS 2711.42 17.0 2704.41 17 209 17 2693.41
LC1_2_5 20 2702.05 LL 2702.05 20.0 2702.05 20 137 20 2702.05
LC1_2_6 20 2701.04 LL 2701.04 20.0 2701.04 20 133 20 2701.04
LC1_2_7 20 2701.04 LL 2701.04 20.0 2701.04 20 139 20 2701.04
LC1_2_8 20 2689.83 LL 2689.83 20.0 2689.83 20 145 20 2689.83
LC1_2_9 18 2724.24 LL 2724.24 18.0 2724.24 18 157 18 2724.24
LC1_2_10 18 2741.56 LL 2967.24 17.0 2943.49 17 104 17 2943.49
LR2_2_1 5 4073.1 SAM 4110.08 5.0 4073.10 5 230 5 4073.10
LR2_2_2 4 3796 SAM 4194.32 4.0 4113.64 4 249 4 3796.00
LR2_2_3 4 3098.36 SAM 3209.80 4.0 3098.36 4 696 4 3098.36
LR2_2_4 3 2487.65 TS 2495.48 3.0 2491.87 3 1191 3 2486.14
LR2_2_5 4 3438.39 SAM 3440.71 4.0 3439.40 4 207 4 3438.39
LR2_2_6 4 3201.54 LL 3204.44 4.0 3201.86 4 499 4 3201.54
LR2_2_7 3 3190.75 LL 3216.40 3.0 3135.05 3 521 3 3135.05
LR2_2_8 3 2187.01 TS 2613.39 2.0 2559.70 2 1114 2 2555.40
LR2_2_9 4 3198.44 SAM 3272.31 3.9 3930.49 3 425 3 3930.49
LR2_2_10 3 3377.45 SAM 3387.47 3.0 3360.74 3 342 3 3344.08
LRC2_2_1 6 3690.1 BH 3722.20 6.0 3622.11 6 117 6 3605.40
LRC2_2_2 6 2666.01 BH 3403.75 5.0 3327.18 5 201 5 3327.18
LRC2_2_3 4 3141.28 SAM 3138.84 4.0 2965.88 4 323 4 2938.28
LRC2_2_4 4 2190.88 TS 3006.86 3.0 2891.10 3 993 3 2887.97
LRC2_2_5 5 2776.93 BH 2786.49 5.0 2782.83 5 302 5 2776.93
LRC2_2_6 5 2707.96 SAM 2713.57 5.0 2710.14 5 302 5 2707.96
LRC2_2_7 4 3050.03 BH 3140.57 4.0 3056.09 4 217 4 3056.09
LRC2_2_8 4 2401.84 BH 2409.16 4.0 2404.09 4 286 4 2399.95
LRC2_2_9 4 2209.54 SAM 2214.37 4.0 2210.88 4 410 4 2208.49
LRC2_2_10 3 2699.55 BH 2558.03 3.1 2551.67 3 467 3 2550.56
LC2_2_1 6 1931.44 SAM 1931.44 6.0 1931.44 6 100 6 1931.44
LC2_2_2 6 1881.4 LL 1881.40 6.0 1881.40 6 157 6 1881.40
LC2_2_3 6 1844.33 SAM 1845.57 6.0 1844.66 6 234 6 1844.33
LC2_2_4 6 1767.12 LL 1772.02 6.0 1768.22 6 427 6 1767.12
LC2_2_5 6 1891.21 LL 1891.21 6.0 1891.21 6 121 6 1891.21
LC2_2_6 6 1857.78 SAM 1857.93 6.0 1857.78 6 150 6 1857.78
LC2_2_7 6 1850.13 SAM 1850.60 6.0 1850.13 6 151 6 1850.13
LC2_2_8 6 1824.34 LL 1825.88 6.0 1824.73 6 193 6 1824.34
LC2_2_9 6 1854.21 SAM 1854.43 6.0 1854.21 6 193 6 1854.21
LC2_2_10 6 1817.45 LL 1818.04 6.0 1817.45 6 245 6 1817.45
Tot. 615 178380 181707.35 608.10 180930.62 606 15815 606 180418.58
Avg. 264
< PB 22 27
<= PB 42 57
#B 33 31 57

Table 17: Results on 200-customer problems
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Best known FULL LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR1_4_1 40 10639.75 TS 10652.59 40.0 10639.75 40 351 40 10639.75
LR1_4_2 31 10533.33 SAM 10125.79 31.0 10015.85 31 554 31 10015.85
LR1_4_3 24 8831.1 SAM 8846.24 23.3 8908.01 23 613 23 8840.46
LR1_4_4 17 5551.47 LL 6974.01 16.0 6814.84 16 575 16 6744.33
LR1_4_5 30 10233.59 TS 10606.32 29.1 10599.54 29 457 29 10599.54
LR1_4_6 25 9456.68 BH 9686.93 25.0 9573.68 25 554 25 9525.45
LR1_4_7 21 8012.3 SAM 8170.00 19.7 8200.37 19 610 19 8200.37
LR1_4_8 15 6320.03 SAM 6093.04 14.1 6044.40 14 568 14 5946.44
LR1_4_9 25 10313.6 SAM 9908.16 24.7 9886.14 24 480 24 9886.14
LR1_4_10 22 8249.87 SAM 8233.16 21.0 8145.03 21 516 21 8016.62
LR2_4_1 8 9726.88 BH 10243.45 8.0 9786.02 8 467 8 9758.46
LR2_4_2 8 7971.09 SAM 9995.30 7.0 9717.03 7 761 7 9496.64
LR2_4_3 6 9794.4 SAM 8586.52 6.0 8116.53 6 1451 6 8116.53
LR2_4_4 5 5116.24 LL 6948.40 4.0 6695.51 4 3409 4 6649.78
LR2_4_5 7 9314.23 SAM 8893.25 7.0 8642.63 7 1096 7 8574.84
LR2_4_6 6 9439.98 SAM 8156.35 6.0 8089.75 6 1236 6 7995.06
LR2_4_7 5 7935.54 SAM 7126.64 5.0 6928.61 5 2019 5 6928.61
LR2_4_8 4 6043.41 LL 5591.83 4.0 5447.40 4 4603 4 5447.40
LR2_4_9 6 8552.29 SAM 8613.50 6.0 8135.86 6 780 6 8043.20
LR2_4_10 6 7449.9 TS 8008.78 5.2 7904.77 5 1385 5 7904.77
LC1_4_1 40 7152.06 SAM 7152.06 40.0 7152.06 40 585 40 7152.06
LC1_4_2 39 7326.93 BH 7395.61 38.9 8012.43 38 597 38 8012.43
LC1_4_3 35 7896.36 SAM 8538.36 33.1 8308.94 33 628 33 8308.94
LC1_4_4 30 6451.68 LL 7013.38 30.7 7021.92 30 558 30 6878.00
LC1_4_5 40 7150 SAM 7150.00 40.0 7150.00 40 508 40 7150.00
LC1_4_6 40 7154.02 LL 7154.02 40.0 7154.02 40 520 40 7154.02
LC1_4_7 40 7149.43 SAM 7149.43 40.0 7149.43 40 529 40 7149.43
LC1_4_8 39 7111.16 LL 7111.86 39.0 7111.16 39 542 39 7111.16
LC1_4_9 36 7539.92 SAM 7471.34 36.1 7458.43 36 462 36 7452.21
LC1_4_10 36 7181.05 TS 7278.25 35.8 7474.07 35 501 35 7387.13
LC2_4_1 12 4116.33 LL 4116.33 12.0 4116.33 12 319 12 4116.33
LC2_4_2 12 4144.29 SAM 4145.71 12.0 4144.49 12 455 12 4144.29
LC2_4_3 12 4624.76 SAM 4533.47 12.0 4483.34 12 681 12 4431.75
LC2_4_4 12 3743.95 LL 4123.21 12.0 4081.93 12 1169 12 4038.00
LC2_4_5 12 4030.63 TS 4030.97 12.0 4030.64 12 366 12 4030.63
LC2_4_6 12 3900.29 SAM 3905.41 12.0 3902.25 12 475 12 3900.29
LC2_4_7 12 3962.51 BH 3976.03 12.0 3969.69 12 481 12 3962.51
LC2_4_8 12 3844.45 SAM 3879.38 12.0 3867.31 12 549 12 3844.45
LC2_4_9 12 4198.61 SAM 4229.42 12.0 4209.49 12 604 12 4188.93
LC2_4_10 12 3828.44 BH 3846.45 12.0 3839.11 12 811 12 3828.44
LRC1_4_1 37 8944.58 TS 9059.11 36.5 9127.15 36 498 36 9127.15
LRC1_4_2 31 8642.74 SAM 8189.18 32.0 8404.51 31 550 31 8346.06
LRC1_4_3 25 7307.09 BH 7413.29 25.7 7429.00 25 644 25 7387.40
LRC1_4_4 19 5944.14 TS 5918.81 19.0 5901.86 19 909 19 5838.58
LRC1_4_5 34 9133.11 SAM 8760.38 34.0 8715.74 34 487 33 8773.75
LRC1_4_6 31 8817.39 SAM 8236.27 31.2 8198.96 31 475 31 8177.90
LRC1_4_7 30 7869.45 BH 7969.23 29.8 7992.08 29 500 29 7992.08
LRC1_4_8 28 7887.67 SAM 7625.79 27.9 7613.43 27 510 27 7613.43
LRC1_4_9 27 8215.25 SAM 7942.38 26.8 8013.48 26 494 26 8013.48
LRC1_4_10 24 7404.91 SAM 7190.05 24.0 7103.78 24 503 24 7065.73
LRC2_4_1 13 6655.52 SAM 7750.57 12.0 7471.01 12 553 12 7471.01
LRC2_4_2 11 7467.34 SAM 6385.15 11.0 6332.52 11 1102 11 6303.36
LRC2_4_3 9 5480.25 TS 5485.05 9.0 5459.06 9 2126 9 5438.20
LRC2_4_4 6 4279.05 LL 5446.01 5.0 5405.16 5 4032 5 5322.43
LRC2_4_5 11 6120.13 BH 6147.77 11.0 6140.07 11 827 11 6120.13
LRC2_4_6 10 6002.63 SAM 6540.83 9.1 6479.56 9 757 9 6479.56
LRC2_4_7 9 5737.02 SAM 6497.14 8.0 6361.26 8 707 8 6361.26
LRC2_4_8 8 5364.31 SAM 6004.71 7.1 5968.27 7 834 7 5928.93
LRC2_4_9 7 6892.23 SAM 5469.65 7.0 5394.73 7 1275 7 5303.53
LRC2_4_10 7 5057.81 TS 6124.51 6.0 5760.78 6 1243 6 5760.78
Tot. 1183 421215 425816.87 1167.80 422201.17 1158 52850 1157 420395.99
Avg. 881
< PB 40 41
<= PB 47 55
#B 19 25 55

Table 18: Results on 400-customer problems
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Best known FULL LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR1_6_1 59 22838.3 BVH 23070.74 59.0 22975.40 59 1443 59 22838.65
LR1_6_2 45 20985.7 BVH 20714.68 45.0 20614.87 45 1438 45 20246.18
LR1_6_3 37 18685.9 BVH 18619.94 37.0 18548.01 37 1620 37 18073.14
LR1_6_4 28 13945.59 TS 13677.43 28.0 13604.92 28 2119 28 13269.71
LR1_6_5 39 22985.63 SAM 21983.13 39.0 22562.81 38 1105 38 22562.81
LR1_6_6 33 21427.75 SAM 20373.88 33.0 20060.42 33 1299 32 20641.02
LR1_6_7 27 17070.51 SAM 16615.48 26.6 16746.97 26 1476 25 17162.90
LR1_6_8 20 12669.88 SAM 12412.57 19.0 12302.45 19 1916 19 11957.59
LR1_6_9 34 21273.3 BVH 20917.36 33.2 20765.52 33 1059 32 21423.05
LR1_6_10 28 19337.5 SAM 18400.79 28.0 18233.75 28 989 27 18723.13
LR2_6_1 12 18840.8 BVH 22245.55 11.0 22049.96 11 1245 11 21945.30
LR2_6_2 11 17452.75 TS 20038.78 10.0 19666.59 10 2089 10 19666.59
LR2_6_3 9 17598.73 SAM 16161.38 8.0 15897.51 8 3729 8 15609.96
LR2_6_4 7 11771.45 TS 11627.85 6.0 10916.25 6 12849 6 10819.45
LR2_6_5 10 19347.2 SAM 20529.74 9.0 20079.56 9 1300 9 19567.41
LR2_6_6 9 19889.05 SAM 18788.90 8.0 17599.80 8 2238 8 17262.96
LR2_6_7 7 16262 BVH 16052.41 6.0 15877.37 6 6915 6 15812.42
LR2_6_8 6 11652.95 TS 11175.02 5.0 11026.09 5 10329 5 10950.90
LR2_6_9 9 18853.4 BVH 19465.02 8.0 19180.31 8 2123 8 18799.36
LR2_6_10 7 18449.18 SAM 17599.63 7.0 17261.53 7 1928 7 17034.63
LC1_6_1 60 14095.6 LL 14095.64 60.0 14095.64 60 1453 60 14095.64
LC1_6_2 58 14379.5 BVH 14383.04 58.0 14380.37 58 1440 58 14379.53
LC1_6_3 51 14569.3 BVH 14676.36 50.8 15028.86 50 1153 50 14683.43
LC1_6_4 48 13567.51 LL 13806.44 49.0 13750.06 49 1066 47 13648.03
LC1_6_5 60 14086.3 LL 14086.30 60.0 14086.30 60 1201 60 14086.30
LC1_6_6 60 14090.79 SAM 14090.79 60.0 14090.79 60 1198 60 14090.79
LC1_6_7 60 14083.76 SAM 14083.76 60.0 14083.76 60 1203 60 14083.76
LC1_6_8 59 14554.27 SAM 14557.89 59.0 14554.81 59 1263 59 14554.27
LC1_6_9 55 14626.25 TS 14676.34 56.0 14596.57 56 1261 54 14706.12
LC1_6_10 54 14627.2 TS 14918.57 55.6 14711.59 55 1329 53 14879.30
LC2_6_1 19 7977.98 SAM 7977.98 19.0 7977.98 19 1137 19 7977.98
LC2_6_2 19 8253.67 SAM 10612.70 18.0 10384.03 18 1277 18 10277.23
LC2_6_3 18 7436.5 BVH 7781.67 17.8 9007.34 17 2033 17 8728.30
LC2_6_4 18 8200.89 TS 8279.98 17.2 8281.94 17 2303 17 8041.97
LC2_6_5 19 8047.37 BVH 8068.59 19.0 8061.74 19 1268 19 8047.37
LC2_6_6 19 8169.95 TS 8149.37 19.0 8129.87 19 1016 19 8094.11
LC2_6_7 19 8038.56 BVH 8108.38 19.0 8086.65 19 1133 19 7998.18
LC2_6_8 18 7808.16 SAM 7632.38 18.0 7616.85 18 1067 18 7579.93
LC2_6_9 19 8134.25 SAM 8173.11 19.0 8160.19 19 1225 18 9501.00
LC2_6_10 18 7555.35 TS 7529.02 18.0 7511.89 18 1775 17 8019.94
LRC1_6_1 53 17930 BVH 18017.12 53.0 17965.79 53 1342 53 17924.88
LRC1_6_2 45 16040.3 BVH 16090.72 44.8 16302.54 44 1389 44 16302.54
LRC1_6_3 36 14407.6 BVH 14395.28 36.0 14310.59 36 1725 36 14060.31
LRC1_6_4 25 11308.6 BVH 11260.62 25.0 11097.51 25 2496 25 10950.52
LRC1_6_5 47 16803.9 BVH 16837.12 47.8 16831.90 47 1256 47 16742.55
LRC1_6_6 44 18205.25 SAM 17059.61 45.0 16994.01 45 1175 44 16894.37
LRC1_6_7 39 16407.68 SAM 15582.48 39.6 15565.62 39 1135 39 15394.87
LRC1_6_8 36 15352.6 BVH 15346.86 36.0 15174.29 36 1099 36 15154.79
LRC1_6_9 36 15751.84 SAM 15092.82 36.2 15000.49 36 1141 35 15134.24
LRC1_6_10 31 14304.37 SAM 14036.50 32.0 13940.77 32 1058 31 13925.51
LRC2_6_1 17 13111.6 BVH 14989.05 16.0 14844.71 16 1194 16 14817.72
LRC2_6_2 15 11463 BVH 12856.00 14.0 12801.40 14 2106 14 12758.77
LRC2_6_3 11 15167.3 BVH 12413.60 10.6 12812.67 10 4830 10 12812.67
LRC2_6_4 8 12512.5 BVH 10461.14 7.4 10574.87 7 13452 7 10574.87
LRC2_6_5 14 15576.76 SAM 13287.40 14.0 13216.21 14 1827 14 13009.52
LRC2_6_6 13 12655.11 SAM 12717.44 13.0 12709.04 13 1826 13 12643.98
LRC2_6_7 11 13996.73 SAM 12109.64 11.0 12070.35 11 1397 11 12007.65
LRC2_6_8 11 14572.07 SAM 12681.15 10.0 12565.94 10 2341 10 12163.43
LRC2_6_9 10 12262.51 TS 14236.58 9.0 13966.61 9 2094 9 13768.01
LRC2_6_10 9 12379.46 TS 12300.10 8.0 12129.35 8 2340 8 12016.94
Tot. 1699 873850 867929.80 1686.60 863441.95 1679 133234 1664 860898.44
Avg. 2221
< PB 41 51
<= PB 45 57
#B 9 9 57

Table 19: Results on 600-customer problems
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Best known FULL LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR181 80 39374.4 LL 39847.80 80.0 39719.88 80 2867 80 39315.92
LR182 59 36122.5 BVH 35197.46 59.0 34746.99 59 2719 59 34370.37
LR183 45 31763 BVH 30506.10 44.0 30301.99 44 2984 44 29718.09
LR184 26 23454.57 SAM 21738.05 25.6 21900.66 25 3458 25 21197.65
LR185 52 39743.88 SAM 37834.13 52.4 37856.78 52 2051 50 39046.06
LR186 42 35011.85 SAM 33815.72 42.6 34315.99 42 2250 42 33659.50
LR187 34 28551.92 SAM 27347.55 32.8 28327.14 32 2720 32 27294.19
LR188 24 21891.97 SAM 20182.46 21.2 20256.27 21 2982 21 19570.21
LR189 44 36550.5 SAM 35693.92 43.0 35531.29 43 1890 42 36126.69
LR1810 34 31443.25 SAM 29741.89 33.6 29587.53 33 1891 32 30200.86
LR281 16 29961.22 SAM 34422.50 15.0 34124.11 15 2009 15 33816.90
LR282 13 37565.81 SAM 30839.74 12.8 33326.43 12 4507 12 32575.97
LR283 11 30046.47 SAM 26211.39 10.0 25446.52 10 8134 10 25310.53
LR284 8 24925.57 SAM 20085.04 7.0 19506.42 7 24419 7 19506.42
LR285 12 34256.18 SAM 34919.19 12.0 33961.98 12 2515 12 32634.29
LR286 10 30688.6 SAM 29070.99 10.0 28629.45 10 5827 10 27870.80
LR287 9 28524.9 BVH 25809.90 8.0 25077.85 8 7397 8 25077.85
LR288 7 19878.42 TS 18168.34 6.0 17800.02 6 29265 5 19256.79
LR289 11 34700.25 SAM 30325.20 10.8 31891.23 10 3025 10 30791.77
LR2810 10 31906.16 SAM 29604.30 9.0 28941.03 9 3425 9 28265.24
LC181 80 25184.38 SAM 25184.38 80.0 25184.38 80 2663 80 25184.38
LC182 78 26056.2 BVH 26186.79 78.0 26131.65 78 2712 78 26062.17
LC183 66 26700.6 BVH 26135.96 66.8 26308.88 66 2591 65 25918.45
LC184 61 23427.2 BVH 23880.34 62.4 23786.46 62 1892 60 22970.88
LC185 80 25211.22 SAM 25211.22 80.0 25211.22 80 2207 80 25211.22
LC186 80 25164.25 SAM 25164.25 80.0 25164.25 80 2210 80 25164.25
LC187 80 25158.38 SAM 25158.38 80.0 25158.38 80 2249 80 25158.38
LC188 78 25427.1 BVH 25262.20 79.0 25255.06 79 2187 78 25348.45
LC189 74 25536 BVH 26352.66 75.4 26363.13 74 2488 73 25541.94
LC1810 72 26364.93 TS 26896.75 75.0 26522.79 74 2394 71 25712.12
LC281 24 11687.06 SAM 11687.06 24.0 11687.06 24 1030 24 11687.06
LC282 25 12575 BVH 12634.54 25.0 12614.42 25 2462 24 14358.92
LC283 25 12500.5 BVH 13687.38 24.0 13551.68 24 2010 24 13198.29
LC284 24 13438.1 TS 12662.06 24.0 12593.32 24 3046 23 13376.82
LC285 25 12298.9 BVH 12357.15 25.0 12350.55 25 1237 25 12329.80
LC286 25 12064.8 BVH 12112.84 25.0 12090.57 25 1713 24 12702.87
LC287 25 11899.18 TS 11895.72 25.0 11878.10 25 1360 25 11855.86
LC288 24 11724.46 TS 11649.71 24.0 11592.23 24 1520 24 11482.88
LC289 24 11700.86 TS 11685.81 24.0 11673.27 24 1862 24 11629.61
LC2810 24 12139.06 TS 11693.40 24.0 11615.76 24 1874 24 11578.58
LRC181 67 32587.9 BVH 32275.83 67.6 32268.95 67 2206 67 32268.95
LRC182 56 28843.1 BVH 28306.81 58.4 28180.05 58 2515 57 28395.39
LRC183 49 24933.9 BVH 24672.74 51.0 24628.67 51 3207 50 24354.36
LRC184 35 18768.4 BVH 18696.22 35.0 18666.34 35 4276 35 18241.91
LRC185 60 32578.04 SAM 31439.49 63.2 31121.74 63 2218 61 30995.48
LRC186 56 29971.97 SAM 29037.55 59.8 28934.95 59 2135 58 28568.61
LRC187 53 29948.45 SAM 28696.11 55.8 28543.20 55 1944 54 28164.41
LRC188 49 28160.88 SAM 26889.40 50.8 26971.48 50 2105 49 26150.65
LRC189 47 26668.91 SAM 25538.12 48.6 25578.39 48 2016 47 24930.70
LRC1810 43 25787.27 SAM 24424.49 44.2 24156.12 44 2004 42 24271.52
LRC281 21 21486.1 LL 21905.03 20.8 23476.51 20 2217 20 23289.40
LRC282 19 19127.96 SAM 20056.42 19.2 19930.17 19 3522 18 21786.62
LRC283 17 18842.56 TS 16423.77 16.4 16846.85 16 6751 16 16586.31
LRC284 13 17693.9 BVH 14406.39 12.0 14122.05 12 19037 12 14122.05
LRC285 18 21626.63 TS 20541.12 18.0 20474.88 18 2725 18 20292.92
LRC286 16 25106.28 SAM 21271.46 16.0 21209.60 16 2792 16 21088.57
LRC287 15 23808.4 SAM 20402.90 15.0 19764.32 15 3187 15 19695.96
LRC288 13 24260 SAM 19670.06 13.0 19423.27 13 3722 13 19009.33
LRC289 13 19514 BVH 19548.71 12.0 19267.46 12 3702 12 19003.68
LRC2810 12 19865.4 BVH 19257.95 10.8 20530.09 10 4736 10 19766.78
Tot. 2213 1492200 1432320.80 2223.00 1432077.81 2208 2350632181 1423062.65
Avg. 3918
< PB 37 48
<= PB 42 53
#B 12 9 53

Table 20: Results on 800-customer problems
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Best known FULL, Both IA = 0.01 LNS best known
veh. cost References avg. avg. best best avg. veh. cost

sol. #veh. sol. #veh. time
(s)

LR1101 100 57977 BVH 57172.54 100.0 57016.58 100 4576 100 56903.88
LR1102 80 52361.61 SAM 49937.45 80.0 49765.70 80 4495 80 49652.10
LR1103 54 44890.55 SAM 42886.53 54.0 42681.33 54 4473 54 42124.44
LR1104 31 32336.04 SAM 31450.33 29.0 32133.36 28 4522 28 32133.36
LR1105 64 58260.68 SAM 58138.72 61.6 59135.86 61 3474 61 59135.86
LR1106 51 49697.85 SAM 47333.63 51.8 48637.63 50 3673 50 48637.63
LR1107 39 39861.97 SAM 38315.35 38.2 38936.54 37 3598 37 38936.54
LR1108 29 31515.87 SAM 29674.35 26.4 29452.32 26 4892 26 29452.32
LR1109 52 52282.36 SAM 51412.70 51.0 52223.15 50 3126 50 52223.15
LR11010 42 45710.21 SAM 45873.80 41.0 46218.35 40 2841 40 46218.35
LR2101 19 45835.55 SAM 47201.18 19.0 45493.36 19 3158 19 45422.58
LR2102 16 48817.75 SAM 51094.71 15.4 50925.97 15 5324 15 47824.44
LR2103 13 43094.14 SAM 38654.94 12.0 37778.15 12 12055 11 39894.32
LR2104 10 32993.09 SAM 28821.03 8.6 29783.60 8 26496 8 28314.95
LR2105 15 56010.62 SAM 53453.03 14.8 55497.90 14 4244 14 53209.98
LR2106 13 48225.07 SAM 46388.49 12.4 46145.75 12 6565 12 43792.11
LR2107 11 38336.76 SAM 36506.87 9.6 38322.91 9 14455 9 36728.20
LR2108 8 32493.7 SAM 27137.04 7.0 26631.41 7 26592 7 26278.09
LR2109 14 55587.14 SAM 52093.74 13.0 50990.04 13 3844 13 48447.49
LR21010 12 47678.69 SAM 44815.46 11.6 46117.94 11 5945 11 44155.66
LC1101 100 42488.66 SAM 42488.66 100.0 42488.66 100 4025 100 42488.66
LC1102 96 43437.2 BVH 43417.56 95.8 43870.19 95 4008 95 43870.19
LC1103 85 42483.61 SAM 42589.34 82.6 42631.11 82 4123 82 42631.11
LC1104 76 39613.83 SAM 38950.40 74.8 39443.00 74 3617 74 39443.00
LC1105 100 42477.4 SAM 42477.41 100.0 42477.41 100 3603 100 42477.41
LC1106 101 42838.39 SAM 42838.39 101.0 42838.39 101 3714 101 42838.39
LC1107 100 42854.99 TS 42855.17 100.0 42854.99 100 3556 100 42854.99
LC1108 99 42711.7 BVH 42964.24 98.0 42954.34 98 3637 98 42951.56
LC1109 93 42899.1 BVH 42614.87 92.2 42391.98 92 3508 92 42391.98
LC11010 91 42243.4 TS 42715.95 90.2 42435.16 90 3582 90 42435.16
LC2101 30 16879.24 TS 16879.24 30.0 16879.24 30 1502 30 16879.24
LC2102 32 17598.6 BVH 19210.16 31.4 19116.33 31 2171 31 18980.98
LC2103 30 19198.95 SAM 17503.99 30.8 17940.74 30 3651 30 17772.49
LC2104 30 17726 LL 19076.31 30.2 18418.52 30 4120 29 18089.93
LC2105 31 17466.42 TS 17149.07 31.0 17137.53 31 2561 31 17137.53
LC2106 31 17352.7 TS 18276.39 31.0 17217.15 31 2012 31 17198.01
LC2107 32 18131.36 TS 19306.15 32.0 17721.20 32 2796 31 19117.67
LC2108 30 17974.2 SAM 17266.57 30.0 17035.24 30 2745 30 17018.63
LC2109 31 17769.6 BVH 17825.02 31.2 17667.44 31 2809 31 17565.95
LC21010 30 18249.85 SAM 18342.21 30.2 17266.19 30 3297 29 17425.55
LRC1101 84 49315.3 BVH 48997.27 85.4 48934.66 85 3638 85 48702.83
LRC1102 73 45679.5 BVH 45351.71 73.0 45272.96 73 3966 73 45135.70
LRC1103 55 36570.5 BVH 35393.15 55.4 35475.72 55 4397 55 35475.72
LRC1104 41 28979.2 BVH 28013.33 40.2 27930.03 40 6042 40 27747.04
LRC1105 76 51455.4 BVH 50012.71 76.2 49816.18 76 3372 76 49816.18
LRC1106 69 47014.55 SAM 44308.41 70.2 44469.08 69 3132 69 44469.08
LRC1107 65 43321.51 SAM 41395.55 65.2 41413.16 64 3047 64 41413.16
LRC1108 60 42968.34 SAM 40946.68 61.0 40590.17 60 3017 60 40590.17
LRC1109 57 42549.12 SAM 39708.07 58.0 39587.85 57 2837 57 39587.85
LRC11010 51 38274.02 SAM 36184.43 52.2 36195.00 52 2930 52 36195.00
LRC2101 23 36894.98 SAM 32969.29 23.2 35073.70 22 2864 22 35073.70
LRC2102 22 28019.7 LL 29945.79 22.2 31054.84 21 4749 21 30932.74
LRC2103 19 30226.39 SAM 27201.83 17.8 28662.28 17 9528 16 28403.51
LRC2104 14 25836.7 BVH 22976.06 12.8 23611.31 12 28075 12 23083.20
LRC2105 19 39344.9 SAM 31946.46 18.8 34713.96 18 3945 18 34713.96
LRC2106 18 29947.9 SAM 30362.74 18.0 29577.50 18 2356 17 31485.26
LRC2107 18 31633.3 BVH 29915.31 17.2 29822.82 17 4432 17 29639.63
LRC21010 13 31361.45 SAM 30293.97 12.2 30160.05 12 5729 12 29402.90
Tot. 2698 2195755 2129031.74 2677.80 2137033.93 2652 3114412646 2122921.51
Avg. 5370
< PB 50 51
<= PB 54 55
#B 7 25 55

Table 21: Results on 1000-customer problems
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