Downloaded from orbit.dtu.dk on: May 27, 2019

DTU Library

=
=
—

i

An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery
Problem with Time Windows

Rapke, Stefan; Pisinger, David
Published in:
Transportation Science

Link to article, DOI:
10.1287/trsc.1050.0135

Publication date:
2006

Document Version _
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Rapke, S., & Pisinger, D. (2006). An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery
Problem with Time Windows. Transportation Science, 40, 455-472. https://doi.org/10.1287/trsc.1050.0135

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://doi.org/10.1287/trsc.1050.0135
http://orbit.dtu.dk/en/publications/an-adaptive-large-neighborhood-search-heuristic-for-the-pickup-and-delivery-problem-with-time-windows(f386d3b9-a20d-4a43-a28a-2d07aed60460).html

An Adaptive Large Neighborhood Search Heuristic for thekijc
and Delivery Problem with Time Windows

Stefan Ropke, David Pisinger
8th August 2005

Abstract

Thepickup and delivery problem with time windoisshe problem of serving a number of transportation
requestsusing a limited amount of vehicles. Each request involvesingpa number of goods from a
pickup location to a delivery location. Our task is to counstrroutes that visit all locations such that
corresponding pickups and deliveries are placed on the saate and such that a pickup is performed
before the corresponding delivery. The routes must alssfgdime window and capacity constraints.

This paper presents a heuristic for the problem based ontangian of thd_arge Neighborhood Search
heuristic previously suggested for solving the vehicleirauproblem with time windows. The proposed
heuristic is composed of a number of competing sub-hecsisthich are used with a frequency correspond-
ing to their historic performance. This general framewsrdénotedddaptive Large Neighborhood Search

The heuristic is tested on more than 350 benchmark instamitbaup to 500 requests. It is able to
improve the best known solutions from the literature for enibran 50% of the problems.

The computational experiments indicate that it is advasttag to use several competing sub-heuristics
instead of just one. We believe that the proposed heurssti@iy robust and is able to adapt to various
instance characteristics.

Keywords: Pickup and Delivery Problem with Time Windows, Large Neighborhood Search, Simulated
Annealing, Metaheuristics

Introduction

In the considered variant of the pickup and delivery probieitih time windows (PDPTW), we are given a
number ofrequestsaandvehicles A request consists of picking up goods at one location atidedimg these
goods to another location. Two time windows are assigneddh eequest: a pickup time window that specifies
when the goods can be picked up and a delivery time windowtéiatwhen the goods can be dropped off.
Furthermoreservice timesre associated with each pickup and delivery. The servigestindicate how long

it will take for the pickup or delivery to be performed. A vels is allowed to arrive at a location before the
start of the time window of the location, but the vehicle mign wait until the start of the time window
before initiating the operation. A vehicle may never artivea location after the end of the time window of the
location.

Each request is assigned a set of feasible vehicles. Thiocarample be used to model situations where
some vehicles cannot enter a certain location because ditrttensions of the vehicle.

Each vehicle have a limited capacity and it starts and esdduity at given locations callestart andend
terminals The start and end location do not need to be the same and hidegcan have different start and
end terminals. Furthermore each vehicle is assigned aastdrend time. The start time indicates when the
vehicle must leave its start location and the end time daertbelatest allowable arrival at its end location. Note
that the vehicle leaves its depot at the specified start tirae though this may introduce a waiting time at the
first location visited.

Our task is to construct valid routes for the vehicles. A eoistvalid if time windows and capacity con-
straints are obeyed along the route, each pickup is serviedebine corresponding delivery, corresponding

pickup and deliveries are served on the same route and thelevehnly serves requests it is allowed to serve.
The routes should be constructed such that they minimizedsigunction to be described below.

As the number of vehicles is limited, we might encounteratitns where some requests cannot be assigned
to a vehicle. These requests are placed in a vireglest bankIn a real world situation it is up to a human
operator to decide what to do with such requests. The oparaght for example decide to rent extra vehicles
in order to serve the remaining requests.

The objective of the problem is to minimize a weighted sumstsiing of the following three components:
1) the sum of the distance traveled by the vehicles, 2) theduhe time spent by each vehicle. The time spent
by a vehicle is defined as its arrival time at the end termirialisits start time (which is given a priori), 3) the
number of requests in the request bank. The three terms &bteg by the coefficients, 3 andyrespectively.
Normally a high value is assigned yaon order to serve as many requests as possible. A mathehratickl is
presented in section 1 to define the problem precisely.

The problem was inspired from a real life vehicle routinglpeon related to transportation of raw materials
and goods between production facilities of a major Danisid fmanufacturer. For confidentiality reasons, we
are not able to present any data about the real life problatmtbtivated this research.

The problem is NP-hard as it contains the traveling salegmnaiblem as a special case. The objective of
this paper is to develop a method for finding good but not reezég optimal solutions to the problem described
above. The developed method should preferably be reagofaa) robust and able to handle large problems.
Thus it seems fair to turn to heuristic methods.

The next paragraphs survey recent work on the PDPTW. Althaoge of the references mentioned below
consider exactly the same problem as ours, they all faceatine sore problem.

Nanry and Barnes [15] are among the first to present a metatiedor the PDPTW. Their approach is
based on a Reactive Tabu Search algorithm that combinesabet@ndard neighborhoods. In order to test
the heuristic, Nanry and Barnes create PDPTW instances drest of standard VRPTW problems proposed
by Solomon [26]. The heuristic is tested on instances witlicup0 requests. Li and Lim [11] use a hybrid
metaheuristic to solve the problem. The heuristic combiBi@sulated Annealing and Tabu search. Their
method is tested on the 9 largest instances from Nanry amikB#t5] and they consider 56 new instances based
on Solomon’s VRPTW problems [26]. Lim, Lim and Rodrigues][@Bply “Squeaky wheel” optimization and
local search to the PDPTW. Their heuristic is tested on thefgeroblems proposed by Li and Lim [11]. Lau
and Liang [10] also apply Tabu search to PDPTW and they desa@veral construction heuristics for the
problem. Special attention is given to how test problemsleaconstructed from VRPTW instances.

Recently, Bent and Van Hentenryck [2] proposed a heuristithie PDPTW based on Large Neighborhood
Search. The heuristic was tested on the problems proposkedaog Lim [11]. The heuristic by Bent and Van
Hentenryck is probably the most promising metaheuristidie PDPTW proposed so far.

Gendreau et al. [9] consider a dynamic version of the probkemejection chain neighborhood is proposed
and steepest descent and Tabu search heuristics basedejactien chain neighborhood are tested. The tabu
search is parallelized and the sequential and parallelizesions are compared.

Several column generation methods for PDPTW have been gedpolrhese methods both include exact
and heuristic methods. Dumas et al. [8] were the first to utenuo generation for solving PDPTW. They
propose a branch and bound method that is able to handlesprebbith up to 55 requests.

Xu et al. [29] consider a PDPTW with several extra real-lisnstraints, including multiple time win-
dows, compatibility constraints and maximum driving tinestrictions. The problem is solved using a column
generation heuristic. The paper considers problem instawith up to 500 requests.

Sigurd et al. [24] solve a PDPTW problem related to trangiam of livestock. This introduces some extra
constraints, such as precedence relations among the tegmesining that some requests must be served before
others in order to avoid the spread of diseases. The prolsawoived to optimality using column generation.
The largest problems solved contain more than 200 requests.

A recent survey of pickup and delivery problem literatureswaade by Desaulniers et al. [7].

The work presented in this paper is based on the MasterssToeBiopke [19]. In the papers by Pisinger
and Ropke [16], [20] it is shown how the heuristic presentethis paper can be extended to solve a variety of
vehicle routing problems, for example the VRPTW, Malti Depot Vehicle Routing Problernd theVehicle
Routing Problem with Backhauls

The rest of this paper is organized as follows: Section 1 defie PDPTW problem formally, Section

2 describes the basic solution method in a general contextidd 3 describes how the solution method has
been applied to PDPTW and extensions to the method are peese®ection 4 contains the results of the
computational tests. The computational test is focusedoomparing the heuristic to existing metaheuristics
and evaluating if the refinements presented in Section 3awepthe heuristic; Section 5 concludes the paper.

1 Mathematical model

This section presents a mathematical model of the problkeisipbased on the model proposed by Desaulniers
et al. [7]. The mathematical model serves as a formal degmmipf the problem. As we solve the problem
heuristically we do not attempt to write the model on intelgezar form.

A problem instance of the pickup and delivery problem corgtairequests andhvehicles. The problem is
defined on a grapt® = {1,--- ,n} is the set of pickup nodef = {n-+1,---,2n} is the set of delivery nodes.
Request is represented by nodeandi + n. K is the set of all vehiclesK| = m. One vehicle might not be able
to serve all requests, as an example a request might retairé¢he vehicle has a freezing compartmeftis
the set of vehicles that are able to serve requastiPx C P andDg C D are the set of pickups and deliveries,
respectively, that can be served by vehligléhus for alli andk: k € Kj < i € PkAi € Dx. Requests whell€; # K
are calledspecial requestsDefineN = PUD andNy = BcUDy. Letty =2n+k, ke K andt, =2n+m+k ke K
be the nodes that represents the start and end terminagctagty, of vehiclek. The graphG = (V, A) consists
of the node®/ = NU{1y,--- ,tm} U{T},---,T};,} and the arcé& =V x V. For each vehicle we have a subgraph
Gk = (Vi, A), whereVi = N U {1} U {1} } and A = Vi x Vi For each edgéi, j) € A we assign a distance
dij > 0 and a travel timg; > 0. It is assumed that distances and times are nonnegdgive;0,tj; > 0 and that
the times satisfy the triangle inequality; < t; +t; for all i, j,I € V. For the sake of modeling we also assume
thatt; n+i +5 > 0, this makes elimination of sub tours and the pickup-beétmievery constraint easy to model.

Each nodé €V has a service timg and a time windowa;, bj]. The service time represents the time needed
for loading and unloading and the time window indicates witinenvisit at the particular location must start; a
visit to nodei can only take place between tiragandb;. A vehicle is allowed to arrive to a location before the
start of the time window but it has to wait until the start of time window before the visit can be performed.
For each node< N, |; is the amount of goods that must be loaded onto the vehickeaidrticular nodd; > 0
fori € Pandl; = —Ii_, for i € D. The capacity of vehicl& € K is denotedCy.

Four types of decision variables are used in the mathenhatiodel. X, i, j € V,k € K is a binary variable
which is one if the edge between nddend nodej is used by vehiclé& and zero otherwiseSy, i €V, ke Kis a
nonnegative integer that indicates when vehkcdéarts the service at locatioyLix, | € V,k € K is a nonnegative
integer that is an upper bound on the amount of goods on edhaditer servicing nodé Sk andLj are only
well-defined when vehiclk actually visits nodé. Finally z, i € P is a binary variable that indicates if request
is placed in the request bank. The variable is one if the itdai@laced in the request bank and zero otherwise.

A mathematical model is:

mina k; (i%eAdinijk + Bk; (Scfk,k - ark) +Vi;2 1)

Subject to:

Xijk+z=1 VieP (2)
keK; jeNk
Xijk — Z/ Xjntik =0 vk e K,Vi € B (3)
JEVK JEVK
Z Xty ik = 1 vk € K (4)
jeRu{t}
Xt k= 1 vk e K (5)
iGDkU{Tk}
Vke K,Vj e Ng (6)

Xijk — ijik =0
i€V i€V

Xik = 1= Sk+5s +1tij < Sk

vk e K, V(i }) € A

(7)

8 <Sk<b vk € K, Vi € W (8)

Sk <Swik VkeK,VieR 9)

Xijk =1=Lik+1j <Lk ke K,V(i,|) € A (20)
Lik <Cx vk e K,Vi € W (12)

Lok = Lyx =0 vk e K (12)

Xijk € {0,1} ke K,V(i,|) € A (13)

z €{0,1} VieP (14)

Sk>0 vk e K,Vi € (15)

Lk >0 vk € K,Vi € W (16)

The objective function minimizes the weighted sum of theadlise traveled, the sum of the time spent by
each vehicle, and the number of requests not scheduled.

Constraint (2) ensures that each pickup location is visitetthat the corresponding request is placed in the
request bank. Constraint (3) ensures that the deliventtiotés visited if the pickup location is visited and
that the visit is performed by the same vehicle. Constrgi)sand (5) ensure that a vehicle leaves every start
terminal and a vehicle enters every end terminal. Togeth#r eonstraint (6) this ensures that consecutive
paths betweemy andt, are formed for each € K.

Constraints (7), (8) ensure thgf is set correctly along the paths and that the time windowoheyed.
These constraints also make sub tours impossible. Camis{@i ensures that each pickup occur before the
corresponding delivery. Constraints (10),(11) and (12uea that the load variable is set correctly along the
paths and that the capacity constraints of the vehicleseapected.

2 Solution method

Local search heuristics are often built on neighborhoodendliat make small changes to the current solution,
such as moving a request from one route to another or exalamngd requests as in Nanry and Barnes [15]
and Li and Lim [11]. These kind of local search heuristicsake to investigate a huge number of solutions in
a short time, but a solution is only changed very little inkedieration. It is our belief that such heuristics can
have difficulties in moving from one promising area of theusioh space to another, when faced with tightly
constrained problems, even when embedded in metahesiristic

One way of tackling this problem is by allowing the search igtunfeasible solutions by relaxing some
constraints; see e.g. Cordeau et al. [5]. We take anotheoagip — instead of using small “standard moves”
we use very large moves that potentially can rearrange up-#0%6 of all requests in a single iteration. The
price of doing this is that the computation time needed fofgoming and evaluating the moves becomes much
larger compared to the smaller moves. The number of sokiealuated by the proposed heuristic per time
unit is only a fraction of the solutions that could be evadgialby a standard heuristic. Nevertheless very good
performance is observed in the computational tests as derated in Section 4.

The proposed heuristic is basedloarge Neighborhood Search (LNiBjroduced by Shaw [21]. The LNS
heuristic has been applied to the VRPTW with good results $ew[21], [22] and Bent and Van Hentenryck

4

Algorithm 1 LNS heuristic
1 Function LNS(se {solutiong, geN)
2 solution SesEs

3 repeat

4 s =s

5 remove q requests fromsg

6 reinsert renoved requests into s
7 if (f(s) < f(ses)) then

8 Shest=S;

9 i f accept(s, s then

10 s=¢|

11 until stop-criterion net
12 return Syest

[4]). Recently the heuristic has been applied to the PDPTWedk(Bent and Van Hentenryck [2]). The LNS
heuristic itself is similar to theuin and recreatéheuristic proposed by Schrimpf et al. [23].

The pseudo-code for a minimizing LNS heuristic is shown igdkithm 1. The pseudo-code assumes
that an initial solutiors already has been found, for example by a simple construtigomistic. The second
parameter determines the scope of the search.

Lines 5 and 6 in the algorithm are the interesting part of taeristic. In line 5, a number of requests
are removed from the current solutishand in line 6 the requests are reinserted into the currentisol
again. The performance and robustness of the overall tieuissvery dependent on the choice of removal
and insertion procedures. In the previously proposed LNSistecs for VRPTW or PDPTW (see for example
Shaw [21] or Bent and Van Hentenryck [2]) near-optimal md#hwere used for the reinsert operation. This was
achieved using a truncated branch and bound search. Irepées pre take a different approach by using simple
insertion heuristics for performing the insertions. Evhough the insertion heuristics themselves usually
deliver solutions of poor quality, the quality of the LNS histic is very good as the bad moves that are
generated by the insertion heuristics lead to a fruitfuediification of the search process.

The rest of the code updates the so far best solution andwats if the new solution should be accepted.
A simple accept criteria would be to accept all improvingusohs. Such a criteria has been used in earlier
LNS implementations (Shaw [21]). In this paper we use a satedl annealing accept criteria.

In line 11 we check if a stop criterion is met. In our implenai@n we stop when a certain number of
iterations has been performed.

The parameteq € {0, - - - ,n} determines the size of the neighborhoodj i§ equal to zero then no search at
all will take place as no requests are removed. On the othret ifig is equal ton then the problem is resolved
from scratch in each iteration. In general, one can say heatdrgerq is, the easier it is to move around in
the solution space, but whaengets larger each application of the insertion proceduredisggto be slower.
Furthermore if one uses a heuristic for inserting requésés) choosing too large might give bad results.

The LNS local search can be seen as an example of a very laigersighborhood search as presented by
Ahuja et al. in [1]. Ahuja et al. define very large scale nemioods as neighborhoods whose sizes grow expo-
nentially as a function of the problem size, or neighbortsotbét simply are too large to be searched explicitly
in practice. The LNS local search fits into the last categasywe have a large number of possibilities for
choosing the requests to remove and a large number of ppss#iartions. One important difference between
the proposed heuristic and most of the heuristics desciibfq is that the latter heuristics typically examine
a huge number of solutions, albeit implicitly, while the LK8uristic proposed in this paper only examines a
relatively low number of solutions.

Instead of viewing the LNS process as a sequence of remgegtioperations, it can also be viewed as a
sequence diix-optimizeoperations. In the fix operation a number of elements in tineentisolution are fixed.

If for example the solution is represented as a vector obldes, the fix operation could fix a number of these
variables at their current value. The optimize operaticnthe-optimizes the solution while respecting the
fixation performed in the previous fix-operation. This wayidwing the heuristic might help us to apply the

heuristic to problems where the remove-insert operatiansa seem intuitive. In Section 3 we introduce the

termAdaptive Large Neighborhood Sean@iLNS) to describe an algorithm using several large neighbods
in an adaptive way. A more general presentation of the ALN8&work can be found in the subsequent paper
[16].

3 LNS applied to PDPTW

This section describes how the LNS heuristic has been apyithe PDPTW. Compared to the LNS heuristic
developed for the VRPTW and PDPTW by Shaw [21], [22] and Badt\#an Hentenryck [2], [4] the heuristic
in this paper is different in several ways:

1. We are using several removal and insertion heuristicengiuhe same search while the earlier LNS
heuristics only used one method for removal and one methodth$ertions. The removal heuristics
are described in Section 3.1 and the insertion heuristiesdascribed in Section 3.2. The method for
selecting which sub-heuristic to use is described in Se@i8. The selection mechanism is guided by
statistics gathered during the search, as described iilD8&:4. We are going to use the teAdaptive
Large Neighborhood SeardALNS) heuristic for a LNS heuristic that uses several cotimgeremoval
and insertion heuristics and chooses between using &siigtthered during the search.

2. Simple and fast heuristics are used for the insertion gfigsts as opposed to the more complicated
branch and bound methods proposed by Shaw [21], [22] and@®hVan Hentenryck [2], [4].

3. The search is embedded in a simulated annealing metatieuwvhere the earlier LNS heuristics used a
simple descent approach. This is described in Section 3.5.

The present section also describes how the LNS heuristidbeansed in a simple algorithm designed for
minimizing the number of vehicles used to serve all requégte vehicle minimization algorithm only works
for homogeneous fleets without an upper bound on the numhahidles available.

3.1 Request removal

This section describes three removal heuristics. All thregristics take a solution and an integeas input.
The output of the heuristic is a solution whereequests have been removed. The heuriStaw removaind
Worst removafurthermore have a parametethat determines the degree of randomization in the heuristi

3.1.1 Shaw removal heuristic

This removal heuristic was proposed by Shaw in [21, 22]. Is #ection it is slightly modified to suit the
PDPTW. The general idea is to remove requests that are scaheivhilar, as we expect it to be reasonably
easy to shuffle similar requests around and thereby creatgorehaps better solutions. If we choose to remove
requests that are very different from each other then we tnighgain anything when reinserting the requests
as we might only be able to insert the requests at their @igiositions or in some bad positions. We define
the similarity of two requestsand j using arelatedness measure(Rj). The lowerR(i, j) is, the more related
are the two requests.

The relatedness measure used in this paper consists okfous:ta distance term, a time term, a capacity
term and a term that considers the vehicles that can be usedv®the two requests. These terms are weighted
using the weight®, x, Y andw respectively. The relatedness measure is given by:

RG) = & (dawag) +dei)) +X (| Tag) = Tag | + [Ten — e) v
KiNK;]
+elh-lil+0(l1l—- ——m—
Wl —1j| (min {[Ki, |Kj| }

A(i) andB(i) denote the pickup and delivery locations of requestdT; indicates the time when locatidns
visited. d;j, li andK; are defined in Section 1. Using the decision varigdrom Section 1, we can writ§ as
Ti = Skek Y jevi SkXijk- The term weighted by measures distance, the term weightedigeasures temporal

6

Algorithm 2 Shaw Removal
1 Functi on ShawRenoval (s € {solutiong, g€ N, peR,)
2 request : r = a randomy selected request fromsS
set of requests : D={r};
whi | e |D| <q do
r = a randomy selected request from D;
Array : L = an array containing all request fromsnot in D;
sort L such that i< j= R(rL[i]) <R(r,L[j]);
choose a random nunmber y fromthe interval[O0,1);
D =DU{LPIL)};
10 end while
11 renove the requests in D froms

O© 0 NOo O~ Ww

Algorithm 3 Worst Removal

1 Function WrstRenoval (se {solutiong, qeN, peRy)

2 while g>0 do

3 Array : L = All planned requests i, sorted by descending costi,s);

4 choose a random nunber y in the interval[0,1);
5 request : r = L[yP|L|];
6
7
8

remove r fromsolution s
q=q-1,
end whil e

connectedness, the term weightedyngompares capacity demand of the requests and the term weeigit
w ensures that two requests get a high relatedness measufg & tew or no vehicles are able to serve both
requests. Itis assumed teit, Ty andl; are normalized such thatOR(i, j) < 2(¢ +X) + W+ w. This is done
by scalingd;j, Tx andl; such that they only take on values frd@1]. Notice that we cannot calculaii, j), if
requesit or j is placed in the request bank.

The relatedness is used to remove requests in the same wagaibdd by Shaw [21]. The procedure for
removing requests is shown in pseudo code in Algorithm 2. grbeedure initially chooses a random request
to remove and in the subsequent iterations it chooses reqies are similar to the already removed requests.
A determinism parametgy > 1 introduces some randomness in the selection of the rexq(sekiw value ofp
corresponds to much randomness).

Notice that the sorting in line 7 can be avoided in an actuplémentation of the algorithm, as it is sufficient
to use a linear time selection algorithm [6] in line 9.

3.1.2 Random removal

The random removal algorithm simply selegteequests at random and removes them from the solution. The
random removal heuristic can be seen as a special case oh#ve i8moval heuristic witlp = 1. We have
implemented a separate random removal heuristic thougholagiously can be implemented to run faster than
the Shaw removal heuristic.

3.1.3 Worst removal

Given a request served by some vehicle in a solutiawe define thecost of the request asost(i,s) =
f(s) — f_i(s) wheref_;(s) is the cost of the solution without requégthe request is not moved to the request
bank, but removed completely). It seems reasonable to ignmve requests with high cost and inserting them
at another place in the solution to obtain a better solutane; therefore we propose a removal heuristic that
removes requests with higlost(i,s).

The worst removal heuristic is shown in pseudo-code in Algor 3. It reuses some of the ideas from
Section 3.1.1.

Notice that the removal is randomized, with the degree aloarization controlled by the parametelike
in Section 3.1.1. This is done to avoid situations where #mesrequests are removed over and over again.
One can say that the Shaw removal heuristic and the worsiadrheuristic belong to two different classes
of removal heuristics. The Shaw heuristic is biased towaetiscting requests that “easily” can be exchanged,
while the worst-removal selects the requests that appdae ptaced in the wrong position in the solution.

3.2 Inserting requests

Insertion heuristics for vehicle routing problems are ¢giliy divided into two categoriesequentialndpar-
allel insertion heuristics. The difference between the two elass that sequential heuristics build one route
at a time while parallel heuristics construct several reaethe same time. Parallel and sequential insertion
heuristics are discussed in further detail in [17]. The Istias presented in this paper are all parallel. The
reader should observe that the insertion heuristic prapbses will be used in a setting where they are given a
number of partial routes and a number of requests to insetiey-geldom build the solution from scratch.

3.2.1 Basic greedy heuristic

The basic greedy heuristic is a simple construction hecurisit performs at mosh iterations as it inserts one
request in each iteration. LAff; x denote the change in objective value incurred by insergggest into route
k at the position that increases the objective value the.lffase cannot insert requesin routek, then we set
Afix = o . We then defing; asc; = mingek {Afix}. In other wordsg; is the “cost” of inserting requestat
its best position overall. We denote this positionthg minimum cost positiorFinally we choose the request
that minimizes '
min g
ey
and insert it at its minimum cost positiokl. is the set of unplanned requests. This process continugsallint
requests have been inserted or no more requests can bedhsert

Observe that in each iteration we only change one route ftben@ inserted into), and we do not have to
recalculate insertion costs in all the other routes. Thigerty is used in the concrete implementation to speed
up the insertion heuristics.

An obvious problem with this heuristic is that it often pastes the placement of “hard” requests (requests
which are expensive to insert, that is requests with lay&o the last iterations where we do not have many
opportunities for inserting the requests as many of theesate “full”. The heuristic presented in the next
section tries to circumvent this problem.

(18)

3.2.2 Regret heuristics

The regret heuristic tries to improve upon the basic greedy heurisfiénisorporating a kind of look ahead
information when selecting the request to insert. kete {1,...,m} be a variable that indicates the route
for which request has thek'th lowest insertion cost, that i&f;y, < Afw, for k < K. Using this notation
we can express; from Section 3.2.1 as; = Afix,. In the regret heuristic we defineragret value ¢ as

¢ = Afix, —Afix,. In other words, the regret value is the difference in the obsiserting the request in its
best route and its second best route. In each iteration gretreeuristic chooses to insert the requietat

maximizes
max ¢

ieVU
The request is inserted at its minimum cost position. Tiedaoken by selecting the insertion with lowest cost.
Informally speaking, we choose the insertion that we wijred most if it is not done now.
The heuristic can be extended in a natural way to define a ofasgret heuristics: theegret-kheuristic is
the construction heuristic that in each construction steses to insert the requeshat maximizes:

max {35, (Afix, —Afix,)}
me i=1 (Afix % (19)

If some requests cannot be inserted in at l@astk 4+ 1 routes, then the request that can be inserted in the
fewest number of routes (but still can be inserted in at leastroute) is inserted. Ties are broken by selecting
the request with best insertion cost. The request is irgatt@&s minimum cost position. The regret heuristic
presented at the start of this section is a regret-2 herigstil the basic insertion heuristic from Section 3.2.1 is
a regret-1 heuristic because of the tie-breaking rulesrindlly speaking, heuristics with> 2 investigate the
cost of inserting a request on thdest routes and insert the request whose cost differeneebetinserting it
into the best route and the— 1 best routes is largest. Compared to a regret-2 heuristicet heuristics with
large values ok discover earlier that the possibilities for inserting aurest become limited.

Regret heuristics have been used by Potvin and Rousseaiof1fi¢ VRPTW. The heuristic in their paper
can be categorized as a regkebeuristic withk = m, as all routes are considered in an expression similar to
(19). The authors do not use the change in the objective Yafusvaluating the cost of an insertion, but use a
special cost function. Regret heuristics can also be usecbfobinatorial optimization problems outside the
vehicle routing domain, an example of an application to tleméalized Assignment Problem was described
by Martello and Toth [13].

As in the previous section we use the fact that we only changeraute in each iteration to speed up the
regret heuristic.

3.3 Choosing a removal and an insertion heuristic

In Section 3.1 we defined three removal heuristidg, r andomandwor st removal), and in Section 3.2 we
defined a class of insertion heuristidmgi ¢ i nsertion, regret-2, regret-3, etc.). One could select one
removal and one insertion heuristic and use these throwghewsearch, but in this paper we propose to use all
heuristics. The reason for doing this is that for examplerdgeet-2 heuristic may be well suited for one type
of instance while the regret-4 heuristic may be the bes¢duituristic for another type of instance. We believe
that alternating between the different removal and inseitieuristics gives us a more robust heuristic overall.
In order to select the heuristic to use, we assign weightsdalifferent heuristics and usaaulette wheel
selection principle If we havek heuristics with weightsv;, i € {1,2,--- /k}, we select heuristi¢ with proba-
bility
Wi
T aW
Notice that the insertion heuristic is selected indepetigest the removal heuristic (and vice versa). It is
possible to set these weights by hand, but it can be a quitdview process if many removal and insertion
heuristics are used. Instead an adaptive weight adjusigrogittam is proposed in Section 3.4.

(20)

3.4 Adaptive weight adjustment

This section describes how the weightsintroduced in Section 3.3 can be automatically adjusteagustatis-
tics from earlier iterations.

The basic idea is to keep track of a score for each heuristiichumeasures how well the heuristic has
performed recently. A high score corresponds to a sucdessiuistic. The entire search is divided into a
number ofsegmentsA segment is a number of iterations of the ALNS heuristiagghge define a segment as
100 iterations. The score of all heuristics is set to zertaistart of each segment. The score of a heuristic is
increased by eithesy, o, or o3 in the following situations:

Parametenl Description

o1 The last remove-insert operation resulted in a new globst $@ution.

(op) The last remove-insert operation resulted in a solution hlaa not been ac-
cepted before. The cost of the new solution is better tharcdlse of current
solution.

O3 The last remove-insert operation resulted in a solution hlaa not been ac-

cepted before. The cost of the new solution is worse thandkeaf current
solution, but the solution was accepted.

The case foio; is clear: if a heuristic is able to find a new overall best sohtthen it has done well.
Similarly if a heuristic has been able to find a solution thed hot been visited before and it is accepted by the
accept criteria in the ALNS search then the heuristic has Baecessful as it has brought the search forward.
It seems sensible to distinguish between the two situattongsponding to parameterss andos because we
prefer heuristics that can improve the solution, but we #&e mterested in heuristics that can diversify the
search and these are rewardedoy It is important to note that we only reward unvisited salos. This is to
encourage heuristics that are able to explore new parteddlution space. We keep track of visited solutions
by assigning a hash key to each solution and storing the kayash table.

In each iteration we apply two heuristics: a removal hewrestd an insertion heuristic. The scores for both
heuristics are updated by the same amount as we can not &therht was the removal or the insertion that
was the reason for the “success”.

At the end of each segment we calculate new weights usingetteeded scores. Let;; be the weight of
heuristici used in segment as the weight used in formula (20). In the first segment we teij heuristics
equally. After we have finished segmentve calculate the weight for all heuristicgo be used in segment

j+1 as follows:
TR

Wi j+1 = W (1—r)+r§i
TG is the score of heuristicobtained during the last segment a&hds the number of times we have attempted
to use heuristi¢ during the last segment. Thieaction factor rcontrols how quickly the weight adjustment
algorithm reacts to changes in the effectiveness of theigt@ms:. Ifr is zero then we do not use the scores at
all and stick to the initial weights. If is set to one then we let the score obtained in the last segieeite the
weight.

Figure 1 shows an example of how the weights of the three rahtwuristics progress over time for a
certain problem instance. The plots are decreasing beadube simulated annealing acceptance criteria to
be described in the next section. Towards the end of thels@aonly accept good moves and therefore it is
harder for the heuristic to get high scores.

3.5 Acceptance and stopping criteria

As described in Section 2 a simple acceptance criteria woelltb only accept solutions that are better than
the current solution. This would give us a descent heuri#&the one proposed by Shaw [21]. However,
such a heuristic has a tendency to get trapped in a local mimiso it seems sensible to, on occasion, accept

solutions that are worse than the current solution. To dg thie use the acceptance criteria from simulated
: : . : . - f($)-1(s)
annealing. That is, we accept a solut®miven the current solutioswith probability e~ ()T whereT >0

is thetemperature

The temperature starts out Bt,t and is decreased every iteration using the expresgienT - ¢, where
0 < c< listhecooling rate A good choice offg4rt is dependent on the problem instance at hand, so instead
of specifyingTsiart S @ parameter we calculalgay: by inspecting our initial solution. First we calculate the
costZ of this solution using a modified objective function. In thedified objective functiony (cost of having
requests in the request bank) is set to zero. The start temuperis now set such that a solution thaiuvs
percent worse than the current solution is accepted withghitity 0.5. The reason for settingo zero is that
this parameter typically is large and could cause us to sestidirting temperature to a too large number if the
initial solution had some requests in the request bank. Wasva parameter that has to be set. We denote this
parameter thetart temperature control parameter

The algorithm stops when a specified number of LNS iteratiawe passed.

3.6 Applying noise to the objective function

As the proposed insertion heuristics are quite myopic, vieveethat it is worthwhile to randomize the insertion
heuristics such that they do not always make the move thatséest locally. This is achieved by adding a
noise term to the objective function. Every time we cal@itiie cos€C of an insertion of a request into a route,
we also calculate a random numbeisein the interval[—-maxN maxN and calculate the modified insertion
costsC’' = max{0,C + noise . At each iteration we decide if we should ©B@r C’ to determine the insertions

10

T
Worst removal

Random removal -------
Shaw removeal --------

weight

0 5000 10000 15000 20000 25000
iteration

Figure 1: The figure shows an example of how the weights for the threemvahheuristics progressed during one
application of the heuristic. The iteration number is sh@long thex-axis and the weight is shown along $raxis. The
graph illustrates that for the particular problem, taadomremoval and th&hawremoval heuristics perform virtually
equally well, while theworst heuristic performs worst. Consequently thierst heuristic is not used as often as the two
other heuristics.

to perform. This decision is taken by the adaptive mechamnisscribed earlier by keeping track of how often
the noise applied insertions and the “clean” insertionssaceessful.

In order to make the amount of noise related to the propesfitiee problem instance, we calculat@axN=
n-max jev {dij } wheren is a parameter that controls the amount of noise. We haveenhosletmaxN be
dependent on the distances as the distances are an important part of the objective iof ditie problems we
consider in this paper.

It might seem superfluous to add noise to the insertion hegias the heuristics are used in a simulated
annealing framework that already contains randomizatiomever we believe that the noise applications are
important as our neighborhood is searched by means of tleetios heuristics and not randomly sampled.
Without the noise applications we do not get the full bendfithe simulated annealing metaheuristic. This
conjecture is supported by the computational experimemsrted in table 3.

3.7 Minimizing the number of vehicles used

Minimization of the number of vehicles used to serve all exjis is often considered as first priority in the
vehicle routing literature. The heuristic proposed so §anot able to cope with such an objective, but by
using a simple two stage algorithm that minimizes the nurobgehicles in the first stage and then minimizes
a secondary objective (typically traveled distance) in ¢heond stage, we can handle such problems. The
vehicle minimization algorithm only works for problems tvih homogeneous fleet. We also assume that the
number of vehicles available is unlimited, such that cartging an initial feasible solution always can be done.

A two-stage method was also used by Bent and Van HentennjcRJ4but while they used two different
neighborhoods and metaheuristics for the two stages, wihasame heuristic in both stages.

The vehicle minimization stage works as follows: first atiahifeasible solution is created using a sequen-
tial insertion method that constructs one route at a timé alhtrequests have been planned. The number of

11

vehicles used in this solution is the initial estimate onribmber of vehicles necessary. Next step is to remove
one route from our feasible solution. The requests on the@vethroute are placed in the request bank. The
resulting problem is solved by our LNS heuristic. When therlstic is run, a high value is assignedytsuch
that requests are moved out of the request bank if possitilee heuristic is able to find a solution that serves
all requests, a new candidate for the minimum number of \ehicas been found. When such a solution has
been found, the LNS heuristic is immediately stopped, oneemaute is removed from the solution and the
process is reiterated. If the LNS heuristic terminates evitHinding a solution where all requests are served,
then the algorithm steps back to the last solution encoedter which all requests were served. This solution
is used as a starting solution in the second stage of thethliggmwhich simply consists of applying the normal
LNS heuristic.

In order to keep the running time of the vehicle minimizatginage down, this stage is only allowed to
spend® LNS iterations all together such that if the first applicataf the LNS heuristic for example spenas
iterations to find a solution where all requests are plantiegh the vehicle minimization stage is only allowed
to perform® — a LNS iterations to minimize the number of vehicles furthenother way to keep the running
time limited is to stop the LNS heuristic when it seems umjikbat a solution exists in which all requests are
planned. In practice this is implemented by stopping the IH€8ristic if 5 or more requests are unplanned
and no improvement in the number of unplanned requests leasfband in the last LNS iterations. In the
computational experimentd was set to 25000 andwas set to 2000.

3.8 Discussion

Using several removal and insertion heuristics during #a@ch may be seen as using local search with several
neighborhoods. To the best of our knowledge this idea habewn used in the LNS literature before. The
related Variable Neighborhood Search (VNS) was proposediagenovt and Hansen [14]. VNS is a meta-
heuristic framework using a parameterized family of ne@hbods. The metaheuristic has received quite a lot
of attention in the recent years and has provided impresesats for many problems. Where ALNS makes
use of several unrelated neighborhoods, VNS typically &ebaon a single neighborhood which is searched
with variable depth.

Several metaheuristics can be used at the top level of ALNflmthe heuristic escape a local minimum.
We have chosen to use simulated annealing as the ALNS heuwilistady contains the random sampling ele-
ment. For a further discussion of metaheuristic framewades in connection with ALNS see the subsequent
paper [16].

The request bank is an entity that makes sense for manyfeeaplplications. In the problems considered in
Section 4 we do not accept solutions with unscheduled résjums the request bank allows us to visit infeasible
solutions in a transition stage, improving the overall skaiThe request bank is particularly important when
minimizing the number of vehicles.

4 Computational experiments

In this section we describe our computational experimeft& first introduce a set of tuning instances in
Section 4.1. In Section 4.2 we evaluate the performanceeoptbposed construction heuristics on the tuning
instances. In Section 4.3 we describe how the parametehne @fltNS heuristic were tuned, and in Section 4.4
we present the results obtained by the ALNS heuristic anthplsr LNS heuristics.

4.1 Tuning instances

First a set of representative tuning instances is identifiée tuning instances must have a fairly limited size as
we want to perform numerous experiments on the tuning pnoblend they should somehow be related to the
problems our heuristic is targeted at. In the case at handam to solve some standard benchmark instances
and a new set of randomly generated instances.

Our tuning set consists of 16 instances. The first four itgarare LR1 2 1, LR202, LRC1 2 3, and
LRC204 from Li and Lim’s benchmark problems [11], contamimetween 50 and 100 requests. The number
of available vehicles was set to one more than that repostdd And Lim to make it easier for the heuristic
to find solutions with no requests in the request bank. Thellagmstances are randomly generated instances.

12

These instances contain both single depot and multi depbtens and problems with requests that only can
be served by a subset of the vehicle fleet. All randomly geéeénaroblems contain 50 requests.

4.2 Evaluation of construction heuristics

First we examine how the simple construction heuristicenf@ection 3.2 perform on the tuning problems, to
see how well they work without the LNS framework. The conginn heuristics regret-1, regret-2, regret-
3, regret-4 and regrett have been implemented. Table 1 shows the results of the Assthe construction
heuristics are deterministic, the results were produceabipyying the heuristics to each of the 16 test problems
once.

Basic greedy Regret-2 Regret-3 Regret-4 Regret-
Avg. gap (%) 40.7 30.3 26.3 26.0 277
Fails 3 3 3 2 0
Time (s) 0.02 0.02 0.02 0.02 0.08

Table 1: Performance of construction heuristics. Each column intéitde corresponds to one of the construction
heuristics. These simple heuristics were not always abt®mstruct a solution where all requests are served, hemce fo
each heuristic we report the number of times this happen#ttifails row. TheAvg. gaprow shows the average relative
difference between the found solution and the best knowutisal. Only solutions where all requests are served are
included in the calculations of the average relative déffexe. The last row shows the average time (in seconds) needed
for applying the heuristic to one problem, running on a 1.5z@&éntium IV.

The results show that the proposed construction heuriatiessery fast, but also very imprecise. Basic
greedy is the worst heuristic, while all the regret hewtsstre comparable with respect to the solution quality.
Regretm stands out though, as it is able to serve all requests inatil@ms. It would probably be possible to
improve the results shown in Table 1 by introducing seedestguas proposed by e.g. Solomon [26]. However
we are not going to report on such experiments in this papenight be surprising that these very imprecise
heuristics can be used as the foundation of a much more priecial search heuristic, but as we are going to
see in the following sections, this is indeed possible.

4.3 Parameter tuning

This part of the paper serves two purposes. First it deschibes the parameters used for producing the results
in Section 4.4 were found. Next, it tries to unveil which paifrthe heuristic contributes most to the solution
quality.

4.3.1 Parameters

This section determines the parameters that need to be.t\edirst review the removal parameters. Shaw
removal is controlled by five parameter; X, ¥, w and p, while the worst removal is controlled by one
parametemyorst.: Random removal has no parameters. The insertion hesriste parameter free when we
have chosen the regret degree.

In order to control the acceptance criteria we use two patensigy andc. The weight adjustment algorithm
is controlled by four parametersy, 0, o3 andr. Finally we have to determine a noise rgtand a parameter
& that controls how many requests we remove in each iteraltio@ach iteration, we chose a random nunber
that satisfies 4 p < min(100,&n), and remove requests.

We stop the search after 25000 LNS iterations as this rekunta fair trade-off between time and quality.

4.3.2 LNS parameter tuning

Despite the large number of parameters used in the LNS hieurigurns out that it is relatively easy to find
a set of parameters that works well for a large range of pnelé/Ne use the following strategy for tuning the
parameters: first a fair parameter setting is produced byldroa trial-and-error phase, this parameter setting
was found while developing the heuristic. This paramet#inggis improved in the second phase by allowing

13

one parameter to take a number of values, while the rest gidrmmeters are kept fixed. For each parameter
setting we apply the heuristic on our set of test problemstifires, and the setting that shows the best average
behavior (in terms of average deviation from the best knoalati®ns) is chosen. We now move on to the
next parameter, using the values found so far and the valoesthe initial tuning for the parameters that have
not been considered yet. This process continues until einpeters have been tuned. Although it would be
possible to process the parameters once again using theatef garameters as a starting point to further
optimize the parameters, we stopped after one pass.

One of the experiments performed during the parametergusonght to determine the value of the parame-
ter & that controls how many requests we remove and insert in éaetion. This parameter should intuitively
have a significant impact on the results our heuristic is tbfroduce. We tested the heuristic wétihhanging
from 0.05 to 0.5 with a step size of 0.05. Table 2 shows theénite of. When¢g is too low the heuristic
is not able to move very far in each iteration, and it has adrigthance of being trapped in one suboptimal
area of the search space. On the other harglisflarge then we can easily move around in the search space,
but we are stretching the capabilities of our insertion istigs. The insertion heuristics work fairly well when
they must insert a limited number of requests into a partiiteon, but they cannot build a good solution from
scratch as seen in Section 4.2. The results in Table 2 shan& +h0.4 is a good choice. One must notice that
the heuristic gets slower whénncreases because the removals and insertions take lohgermore requests
are involved, thus the comparison in Table 2 is not compjietet.

g 0.05] 0.1 [015] 0.2 [0.25] 0.3 | 0.35] 0.4 | 0.45] 05
Avg. gap (%)| 1.75| 1.65| 1.21| 0.97| 0.81] 0.71| 0.81] 0.49| 0.57 | 0.57

Table 2: Parametek vs. solution quality. The first row shows the values of theapzeteré that were tested and the
second row shows the gap between the average solution ettaind the best solutions produced in the experiment.

The complete parameter tuning resulted in the followingapaater vectord(, X, W, w, p, Pworst, W, C, 01,
02,03, 1, N, €& =(9, 3, 2,5, 6,3, 0.05, 0.99975, 33, 9, 13, 0.1, 0.025, 0AWYr experiments also indicated
that it was possible to improve the performance of the vehighimization algorithm by settingy c) = (0.35,
0.9999) while searching for solutions that serve all retgiekhis corresponds to a higher start temperature and
a slower cooling rate. This indicates that more diversiiocais needed when trying to minimize the number of
vehicles, compared to the situation where one just minigiilze traveled distance.

In order to tune the parameters we start from an initial guesd then tune one parameter at a time. When
all parameters are tuned, the process is repeated. In thigwwaalibration order plays a minor order. Although
the parameter tuning is quite time consuming, it could gdml automated. In our subsequent papers [20, 16]
where 11 variants of the vehicle routing problem are soh&dgithe heuristic proposed in this paper we only
re-tuned a few parameters and obtained very convincingtseso it seems that a complete tuning of the
parameters only needs to be done once.

4.3.3 LNS configurations

This section evaluates how the different removal and if@etteuristics behave when used in a LNS heuristic.
In most of the test cases a simple LNS heuristic was used titatimvolved one removal heuristic and one
insertion heuristic. Table 3 shows a summary of this expenim

The first six experiments aim at determining the influencehef temoval heuristic. We see that Shaw
removal performs best, the worst removal heuristic is seécand the random removal heuristic gives the worst
performance. This is reassuring as it shows that the twbtsfignore complicated removal heuristics actually
are better than the simplest removal heuristic. Thesetsealdo illustrate that the removal heuristic can have
a rather large impact on the solution quality obtained, #gwserimenting with other removal heuristics would
be interesting and could prove beneficial.

The next eight experiments show the performance of thetineeneuristics. Here we have chosen Shaw
removal as removal heuristic because it performed bestamthvious experiments. In these experiments
we see that all insertion heuristics perform quite well, #rel/ are quite hard to distinguish from each other.
Regret-3 and Regret-4 coupled with noise addition are tidfetter than the rest though. An observation that
applies to all experiments is that application of noise setmielp the heuristic. It is interesting to note that the

14

Conf. | Shaw Rand Worst Reg-1 Reg-2 Reg-3 Reg-4 Reg{ Noise | Avg. gap (%)
1 ° ° 2.7
2 ° ° ° 2.6
3 ° ° 54
4 ° ° ° 3.2
5 ° ° 2.0
6 ° ° ° 1.6
LNS 7 . . 2.2
8 ° ° ° 1.6
9 ° ° 1.8
10 ° ° ° 1.3
11 ° ° 2.0
12 ° ° ° 1.3
13 ° . 1.8
14 ° ° ° 1.7
ALNS 15 ° ° ° ° ° ° ° ° ° 1.3

Table 3: Simple LNS heuristics compared to the full adaptive LNS vdyimamic weight adjustment. The first column
shows if the configuration must be considered as an LNS or adSAheuristic. The second column is the configuration
number, columns three to five indicate which removal heigestere used. Columns six to ten indicate which insertion
heuristics were used. Column eleven states if noise wasdaddbe objective function during insertion of requests (in
this case noise was added to the objective function in 50%efrisertions for the simple configurations 1-14 while
in configuration 15 the number of noise-insertions was @diedl by the adaptive method). Column twelve shows the
average performance of the different heuristics. As an @k@nm configuration four we used random removal together
with the regret-2 insertion heuristic and we applied nodsthe objective value. This resulted in a set of solutionsseho
objective values on average were 3.2% above the best swiftand during the whole experiment.

basic insertion heuristic nearly performs as well as theetdgeuristics when used in a LNS framework. This
is surprising seen in the light of Table 1 where the basicrifseheuristic performed particularly badly. This
observation may indicate that the LNS method is relativelyust with respect to the insertion method used.

The last row of the table shows the performance of ALNS. Asaaresee, it is on par with the two best
simple approaches, but not better, which at first may seeapp@@nting. The results show though, that the
adaptive mechanism is able to find a sensible set of weightkitas our hypothesis that the ALNS heuristic
is more robust than the simpler LNS heuristics. That is, theke configuration may fail to produce good
solutions on other types of problems, while the ALNS heigrisbntinues to perform well. One of the purposes
of the experiments in Section 4.4 is to confirm or disprove Hyipothesis.

4.4 Results

This section provides computational experiments condutti¢est the performance of the heuristic. There are
three major objectives for this section:

1. To compare the ALNS heuristic to a simple LNS heuristi¢ thdy contains one removal and one inser-
tion heuristic.

2. To determine if certain problem properties influence & NS heuristics ability to find good solutions.
3. To compare the ALNS heuristic with state-of-the-art PB\PHeuristics from the literature.

In order to clarify if the ALNS heuristic is worthwhile compad to a simpler LNS heuristic we are going to
show results for both the ALNS heuristic and the best simpSlheuristic from Table 3. Configuration 12
was chosen as representative for the simple LNS heuristidsperformed slightly better than configuration
10. In the following sections we refer to the full and simpl$ heuristic as ALNS and LNS respectively.

All experiments were performed on a 1.5 GHz Pentium IV PC 286 MB internal memory, running
Linux. The implemented algorithm measures travel timesdisthnces using double precision floating point
numbers. The parameter setting found in Section 4.3.2 wexsinsall experiments unless otherwise stated.

15

4.4.1 Datasets

As the model considered in this paper is quite complicated, hard to find any benchmark instances that
consider exactly the same model and objective function. Bdrehmark instances that come closest to the
model considered in this paper are the instances congdrogt®lanry and Barnes [15] and the instances con-
structed by Li and Lim [11]. Both data sets are single depcityp and delivery problems with time windows,
constructed from VRPTW problems. We are only reporting Itesan the data set proposed by Li and Lim, as
the Nanry and Barnes instances are easy to solve due toittesir s

The problem considered by Li and Lim were simpler than theaomsidered in this paper as: 1) it did not
contain multiple depots; 2) all requests must be servedjl 3ehicles were assumed to be able to serve all
requests. When solving the Li and Lim instances using the 8lbEuristic we sai to one and3 to zero in our
objective function. In section 4.5 we minimize the numbevaelficles as first priority while we in section 4.4.2
only minimize the distance driven.

In order to test all aspects of the model proposed in this pape also introduce some new, randomly
generated instances. These instances are describedignsedt3.

4.4.2 Comparing ALNS and LNS using the Li & Lim instances

This section compares the ALNS and LNS heuristics using émetimark instances proposed by Li and Lim
[11]. The data set contains 354 instances with between 1Q@0E0 locations. The data set can be downloaded
from [25].

In this section we use the distance driven as our objectiga #wugh vehicle minimization is the standard
primary objective for these instances. The reason for #issibn is that distance minimization makes compar-
ison of the heuristics easier and distance minimizatiohesariginal objective of the proposed heuristic. The
number of vehicles available for serving the requests isosttte minimum values reported by Li and Lim in
[11] and on their web page which unfortunately no longer isioe.

The heuristics were applied 10 times to each instance willodess locations and 5 times to each instance
with more than 400 locations. The experiments are sumnthiizéable 4.

Best known solutions Avg. gap (%) | Average time (s) Fails
#locations| #problems| ALNS LNS | ALNS LNS | ALNS LNS | ALNS LNS
100 56 52 50 0.19 0.50 49 55 0 0
200 60 49 15 0.72 141 305 314 0 0
400 60 52 6 2.36 4.29 585 752 0 0
600 60 54 5 0.93 3.20f 1069 1470 0 0
800 60 46 5 1.73 3.27| 2025 3051 0 2
1000 58 47 4 2.26 4.22| 2916 5252 0 1

Table 4: Summary of results obtained on Li and Lim instances [11]. flits& column gives the problem size; the next
column indicates the number of problems in the data set gbaingcular size. The rest of the table consists of four major
columns, each divided into two sub columns, one for the ALKS ane for LNS. The columBest known solutions
indicates for how many problems the best known solution waatified. The best known solution is either the solution
reported by Li and Lim or the best solution identified by thgL(NS heuristics depending on which is best. The next
column indicates how far the average solution is from bestknsolution. This number is averaged over all problems of
a particular size. The next column shows how long the heciiest average spends to solve a problem. The last column
shows the number of times the heuristic failed to find a sotutvhere all request are served by the given number of
vehicles in all the attempts to solve a particular problem.

The results show that the ALNS heuristic on all four termdgqrens better than the LNS heuristic. One also
notices that the ALNS heuristic becomes even more atteetivthe problem size increases. It may seem odd
that the LNS heuristic spends more time compared to the AL&LBistic when they both perform the same
number of LNS iterations. The reason for this behavior i$ tha Shaw removal heuristic used by the LNS
heuristic is more time consuming compared to the two otheokal heuristics.

16

4.4.3 New instances

This section provides results on randomly generated PDR&{dmces that contain features of the model that
were not used in the Li and Lim benchmark problems considier&ection 4.4.2. These features are: multiple
depots, routes with different start and end terminals spetialrequests that only can be served by a certain
subset of the vehicles. When solving these instances we-=s¢t = 1 in the objective function so that distance
and time are weighted equally in the objective function. \Wadt perform vehicle minimization as the vehicles
are inhomogeneous.

Three types of geographical distributions of requests ansidered: problems with locations distributed
uniformly in the plane, problems with locations distribdii@ 10 clusters and problems with 50% of the loca-
tions are put in 10 clusters and 50% of the locations digitbwniformly. These three types of problems were
inspired by Solomon’s VRPTW benchmark problems [26], amddioblems are similar to the R, the C and the
RC Solomon problems respectively. We consider problemis %6t 100, 250 and 500 requests, all problems
are multi depot problems. For each problem size we genef&qutoblems as we tried every combination of
the three problem features shown below:

e Route type: 1) A route starts and ends at the same locati@raite starts and ends at different locations.

e Request type: 1) All requests are normal requests, 2) 50%eofdquests arspecialrequests. The
special requests can only be served by a subset of the v&hinléhe test problems each special request
could only be served by between 30% to 60% of the vehicles.

e Geographical distributions: 1) Uniform, 2) Clustered, 8n8-clustered.

The instances can be downloaded from www.diku.dk/~srojpke. heuristics were tested by applying them to
each of the 48 problems 10 times. Table 5 shows a summary oé$ioéts found. In the table we list for how
many problems the two heuristics find the best known solutibine best known solution is simply the best
solution found throughout this experiment.

We observe the same tendencies as in Table 4; ALNS is stiélrgarpto LNS, but one notices that the gap
in solution quality between the two methods are smallertir $et of instances while the difference in running
time is larger compared to the results on the Li and Lim instan One also notices that it seems harder to solve
small instances of this problem class compared to the Li amdihistances.

Best known solutions Avg. gap (%) | Average time (s)

#requestg #problems| ALNS LNS | ALNS LNS | ALNS LNS
50 12 8 5 1.44 1.86 23 34

100 12 11 1 1.54 2.18 83 142

250 12 7 5 139 1.62 577 1274

500 12 9 3 118 1.32 3805 8146
Sum: 48 35 14 555 6.98 4488 9596

Table 5: Summary of results obtained on new instances. The captioihe ¢able should be interpreted as in Table 4.
The last row sums each column. Notice that the size of thelgmubin this table is given as humber of requests and not
the number of locations.

Table 6 summarizes how the problem features influence thhragesolution quality. These results show that
the clustered problems are the hardest to solve, while thHermiy distributed instances are the easiest. The
results also indicate that special requests make the pnadlightly harder to solve. The route type experiments
compare the situation where routes start and end at the saatoh (the typical situation considered in the
literature) to the situation where each route starts and ahdifferent locations. Here we expect the last case to
be the easiest to solve, as we by having different start adgbesitions for our routes, gain information about
the area the route most likely should cover. The results ioteT@ confirm these expectations.

In addition to investigate the question of how the modeluesd influence the average solution quality
obtained by the heuristics we also want to know if the pres@ficome features could make LNS behave better
than ALNS. For the considered features the answer is negativ

17

Feature ALNS LNS

Distribution: Uniform 1.04% 1.50%
Distribution: Clustered 1.89% 2.09%
Distribution: Semi-clustered 1.23% 1.64%
Normal Requests 1.24% 1.47%
Special Requests 1.54% 2.02%

Start of route = end of routed 1.59% 2.04%
Start of route# end of route| 1.19% 1.45%

Table 6: Summary of the influence of certain problem features on theistic solutions. The two columns correspond
to the two heuristic configurations. Each row shows the ayeesmlution quality for each feature. The average solution
quality is defined as the average of the average gap for dlinnes with a specific feature. To be more precise, the
solution quality is calculated using the formulath) = 2 Sicr (%) z}gl%{)d“)) whereF is the set of instances

with a specific featureg/(i) is the cost of the best known solution to instaneadc(i, j, h) is the cost obtained in thggh
experiment on instandeusing heuristid.

4.5 Comparison to existing heuristics

This section compares the ALNS heuristics to existing tstics for the PDPTW. The comparison is performed
using the benchmark instances proposed by Liand Lim [11}isa were used in Section 4.4.2. When PDPTW
problems have been solved in the literature, the primargative has been to minimize the number of vehicles
used while the secondary objective has been to minimizer#iveled distance. For this purpose we use the
vehicle minimization algorithm described in Section 3.heTALNS heuristic was applied 10 times to each
instance with 200 or less locations and 5 times to each iostatith more than 200 locations. The experiments
are summarized in Tables 7, 8 and 9. It should be noted thatdtnecessary to decrease thparameter and
increase the parameter when the instances with 1000 locations weredaiverder to get reasonable solution
quality. Apart from that, the same parameter setting has beed for all instances.

In the literature, four heuristics have been applied to teechmark problems: the heuristic by Li and
Lim [11], the heuristic by Bent and Van Hentenryck [2] and te@mmmercial heuristics; a heuristic developed
by SINTEF and a heuristic developed by TetraSoft A/S. Dethilesults for the two last heuristics are not
available but some results obtained using these heurstitde found on a web page maintained by SINTEF
[25]. The heuristic that has obtained the best overall Bwiuguality so far is probably the one by Bent and
Van Hentenryck [2] (shortened BH heuristic in the followjntherefore the ALNS heuristic is compared to
this heuristic in Table 7. The complete results from the Bldrtstic can be found in [3]. The results given
for the BH heuristic are the best obtained among 10 expetsr({#mough for the 100 location instances only 5
experiments were performed). Theg. TTBcolumn shows the average time needed for the BH heuristic to
obtain its best solution. For the ALNS heuristic we only thls time used in total as this heuristic - because of
its simulated annealing component, the heuristic usuailysfits best solution towards the end of the search.
The BH heuristic was tested on a 1.2 GHz Athlon processor lamdunning times of the two heuristics should
therefore be comparable (we believe that the Athlon praceissat most 20% slower than our computer).
The results show that the ALNS heuristic overall dominatesBH heuristic, especially as the problem sizes
increase. It is also clear that the ALNS heuristic is ablartprove considerably on the previously best known
solutions and that the vehicle minimization algorithm weoslery well despite its simplicity. The last two
columns in Table 7 summarize the best results obtained wEugral experiments with different parameter
settings, which show that the results obtained by ALNS digtean be improved even further.

Table 8 compares the results obtained by ALNS with the beswkrsolutions from the literature. It can be
seen that ALNS improves more than half of the solutions amikges a solution that is at least as good as the
previously best known solution for 80% of the problems.

The two afore mentioned tables only dealt with the best mlatfound by the ALNS heuristic. Table
9 shows the average solution quality obtained by the héurigthese numbers can be compared to those in
Table 7. It is worth noticing that the average solution some$ have a lower distance than the “best of 10
or 5” solution in table 7, this is the case in the last row. Tikipossible because the heuristic finds solutions
that use more than the minimum number of vehicles and thiallysmakes solutions with shorter distances

18

Best known 2003 BH best ALNS best of 10 or 5 ALNS best
#locations | #veh. Dist | #veh. Dist Avg. TTB Avg. time| #veh. Dist Avg. time| #veh. Dist
100 402 58060 402 58062 68 3900 402 58060 66| 402 56060
200 615 178380| 614 180358 772 3900 606 180931 264, 606 180419
400 | 1183 421215| 1188 423636 2581 6000 1158 422201 881 1157 420396
600 | 1699 873850 1718 879940 3376 6000 1679 863442 2221 1664 860898
800 | 2213 1492200 2245 1480767 5878 8100 2208 1432078 3918 2181 1423063
1000 | 2698 2195755 2759 2225190 6174 8100 2652 2137034 5370 2646 2122922

Table 7: This table compares the ALNS heuristic to existing heursstising the Li and Lim benchmark instances.
Each row in the table corresponds to a set of problems witls&inee number of locations. Each of these problem sets
contain between 56 and 60 instances (see Table 8). The fishnandicates the number of locations in each problem;
the next two columns give the total number of vehicles usebithe total distance traveled in the previously best known
solutions as listed on the SINTEF web page [25] in the sumh2003. The next four columns show information about
the solutions obtained by Bent and Van Hentenryck’s hdaifig}. The two columnsAvg. TTBandAvg. timeshow the
average time needed to reach the best solution and the av@mag spent on each instance, respectively. Both columns
report the time needed to perform one experiment on onenostd he next three columns report the solutions obtained in
the experiment with the ALNS heuristic where the heuristsvapplied either 5 or 10 times to each problem. The last two
columns report the best solutions obtained in several @xeats with our ALNS heuristic and with various parameter
settings. Note that Bent and Van Hentenryck in some casesfband slightly better results than reported on the SINTEF

web page in 2003. This is the reason why the number of vehisled by the BH heuristic for the 200 locations problems
is smaller than in the best known solutions.

possible.

Overall, one can conclude that the ALNS heuristic must besicemed as a state of the art heuristic for the
PDPTW. The cost of the best solutions identified during theerments are listed in Tables 10 to 15.

4.6 Computational tests conclusion

In Section 4.4 we stated three objectives for our computatiexperiments. The tests fulfilled these objectives
as we saw that: 1) the adaptive LNS heuristic that combinegakeremoval and construction heuristics displays
superior performance compared to the simple LNS heuribtit only uses one insertion heuristic and one
removal heuristic; 2) certain problem characteristicugrfice the performance of the LNS heuristic but we did
not find that any characteristics could make the LNS hearjsiform better than the ALNS heuristic; 3) the
LNS heuristic indeed is able to find good quality solutionsireasonable amount of time, and the heuristic
outperforms previously proposed heuristics.

The experiments also illustrate the importance of testigistics on large sets of problem instances as the

ALNS best of 10 or 5| ALNS best

#locations| #problems| <PB <PB | <PB <PB
100 56 0 54 0 55

200 60 22 42 27 57

400 60 40 47 41 55

600 60 41 45 51 57

800 60 37 42 48 53

1000 58 50 54 51 55

Table 8: Comparison of the ALNS heuristic to the previously best kn@slutions. The table is grouped by problem
size. The first column shows the problem size, the next colshamvs the number of problems of that size. The next
two columns give additional information about the experitmehere the ALNS heuristic was applied 5 or 10 times to
each instance. The columaBB report how many times the best solution found by the ALNS istiaiwas strictly better
than the previously best known solution. The colursii®B show how many times the best solution found by ALNS was
at least as good as the previously best known solution. T8tévie columns show information about the best solutions
obtained during experimentation with different parameggtings.

19

#locations| Avg. #veh. Avg. Dist
100 403 58249

200 608 181707

400 1168 425817

600 1686 867930

800 2223 1432321

1000 2677 2129032

Table 9: The ALNS heuristic was applied 10 times to each problem wilB @r less locations and 5 times to each
problem with more than 200 locations. The best solutionsntep in Table 7 and 8 were of course not obtained in all
experiments. This table shows the average number of vahérid average distance traveled obtained. These numbers
can be compared to the figures in Table 7

R1 R2 C1 C2 RC1 RC2
1| 19 1650.80| 4 1253.23| 10 828.94| 3 591.56| 14 1708.80] 4 1406.94
2|17 1487.57| 3 1197.67| 10 828.94| 3 591.56| 12 1558.07| 3 1374.27
3|13 1292.68/ 3 949.40| 9 1035.35| 3 591.17| 11 1258.74| 3 1089.07
41 9 1013.39| 2 849.05| 9 860.01| 3 590.60| 10 1128.40 3 818.66
5|14 1377.11] 3 1054.02| 10 828.94| 3 588.88| 13 1637.62 4 1302.20
6|12 1252.62| 3 931.63| 10 828.94| 3 588.49| 11 1424.73| 3 1159.03
7110 1111.31} 2 903.06| 10 828.94| 3 588.29| 11 1230.14] 3 1062.05
8| 9 96897 2 734.85| 10 826.44| 3 588.32| 10 1147.43] 3 852.76
9|11 1208.96/ 3 930.59| 9 1000.60
10 | 10 1159.35| 3 964.22
11| 10 1108.90] 2 911.52
12| 9 1003.77

Table 10: Best results, 100 locations. The Li and Lim benchmark instarare divided into six sets: R1, R2, C1, C2,
RC1 and RC2. Each of the major columns corresponds to onesd tets, the column at the left give the problem number.
For each problem instance we report the number of vehicl@stendistance traveled in the best solution obtained during
experimentation. Bold numbers indicate best known sahgtio

R1 R2 C1 C2 RC1 RC2
1|20 4819.12| 5 4073.10| 20 2704.57) 6 1931.44| 19 3606.06| 6 3605.40
2|17 4621.21) 4 3796.00| 19 2764.56| 6 1881.40| 15 3674.80| 5 3327.18
3|15 3612.64| 4 3098.36| 17 3128.61| 6 1844.33| 13 3178.17| 4 2938.28
4|10 3037.38 3 2486.14| 17 269341 6 1767.12| 10 2631.82| 3 2887.97
5|16 4760.18| 4 3438.39| 20 2702.05| 6 1891.21| 16 3715.81] 5 2776.93
6| 14 4178.24| 4 3201.54| 20 2701.04| 6 1857.78| 17 3368.66/ 5 2707.96
7112 3550.61 3 3135.05| 20 2701.04| 6 1850.13| 14 3668.39| 4 3056.09
8| 9 2784.53| 2 2555.40| 20 2689.83| 6 1824.34| 13 3174.55| 4 2399.95
9| 14 4354.66] 3 3930.49| 18 2724.24| 6 1854.21| 13 3226.72| 4 2208.49
10| 11 3714.16] 3 3344.08| 17 2943.49| 6 1817.45| 12 2951.29| 3 2550.56

Table 11: Best results, 200 locations.

20

R1 R2 C1 Cc2 RC1 RC2

1| 40 10639.75 8 9758.46| 40 7152.06| 12 4116.33| 36 9127.15| 12 7471.01

2| 31 10015.85 7 9496.64| 38 8012.43| 12 4144.29| 31 8346.06| 11 6303.36

3|23 8840.46| 6 8116.53| 33 8308.94| 12 4431.75| 25 7387.40{ 9 5438.20

4| 16 6744.33| 4 6649.78| 30 6878.00] 12 4038.00] 19 5838.58] 5 5322.43

5129 10599.54| 7 8574.84| 40 7150.00{ 12 4030.63| 33 8773.75| 11 6120.13

6| 25 9525.45| 6 7995.06| 40 7154.02| 12 3900.29| 31 8177.90] 9 6479.56

7|19 8200.37| 5 6928.61| 40 7149.43| 12 3962.51| 29 7992.08/ 8 6361.26

8| 14 5946.44| 4 5447.40| 39 7111.16| 12 3844.45| 27 7613.43| 7 5928.93

9| 24 0886.14| 6 8043.20| 36 7452.21| 12 4188.93] 26 8013.48| 7 5303.53

10| 21 8016.62| 5 7904.77| 35 7387.13| 12 3828.44| 24 7065.73| 6 5760.78

Table 12: Best results, 400 locations.
R1 R2 C1l Cc2 RC1 RC2
1|59 22838.65 11 21945.30 60 14095.64| 19 7977.98 53 17924.88 16 14817.72
2 | 45 20246.18 10 19666.59] 58 14379.53| 18 10277.23| 44 16302.54) 14 12758.77
3| 37 18073.14| 8 15609.96| 50 14683.43| 17 8728.30) 36 14060.31] 10 12812.67
4| 28 13269.71) 6 10819.45| 47 13648.03| 17 8041.97) 25 10950.52| 7 10574.87
5|38 22562.81] 9 19567.41) 60 14086.30] 19 8047.37| 47 16742.55 14 13009.52
6| 32 20641.02f 8 17262.96/ 60 14090.79| 19 8094.11| 44 16894.37] 13 12643.98
7|25 1716290, 6 15812.42| 60 14083.76| 19 7998.18| 39 15394.87] 11 12007.65
8| 19 1195759 5 10950.90| 59 14554.27| 18 7579.93| 36 15154.79 10 12163.43
9| 32 21423.05 8 18799.36| 54 14706.12| 18 9501.00) 35 15134.24] 9 13768.01
10| 27 18723.13] 7 17034.63| 53 14879.30| 17 8019.94| 31 13925.51] 8 12016.94
Table 13: Best results, 600 locations.
R1 R2 C1l Cc2 RC1 RC2

1| 80 39315.92| 15 33816.90] 80 25184.38| 24 11687.06] 67 32268.95 20 23289.40
2 | 59 34370.37| 12 32575.97| 78 26062.17| 24 14358.92| 57 28395.39 18 21786.62
3|44 29718.09] 10 25310.53] 65 25918.45| 24 13198.29] 50 24354.36) 16 16586.31
4 | 25 21197.65 7 19506.42 60 22970.88| 23 13376.82| 35 18241.91 12 14122.05
5| 50 39046.06] 12 32634.29 80 25211.22| 25 12329.80] 61 30995.48 18 20292.92
6 | 42 33659.50] 10 27870.80] 80 25164.25| 24 12702.87| 58 28568.61) 16 21088.57
7|32 2729419 8 25077.85| 80 25158.38| 25 11855.86| 54 28164.41) 15 19695.96
8| 21 19570.21 5 19256.79| 78 25348.45| 24 11482.88 49 26150.65 13 19009.33
9| 42 36126.69 10 30791.77| 73 25541.94| 24 11629.61] 47 24930.70, 12 19003.68
10 | 32 30200.86] 9 28265.24| 71 25712.12| 24 11578.58| 42 24271.52] 10 19766.78

Table 14: Best results, 800 locations.

21

R1 R2 C1 C2 RC1 RC2
100 56903.88 19 45422.58 100 42488.66 30 16879.24| 85 48702.83 22 35073.70
80 49652.10| 15 47824.44] 95 43870.19 31 18980.98 73 45135.70 21 30932.74
54 42124.44) 11 39894.32| 82 42631.11) 30 17772.49 55 35475.72| 16 28403.51
28 32133.36| 8 28314.95| 74 39443.00 29 18089.93| 40 27747.04] 12 23083.20
61 59135.86 14 53209.98 100 42477.41 31 17137.53 76 49816.18 18 34713.96
50 48637.63| 12 43792.11 101 42838.39 31 17198.01 69 44469.08 17 31485.26
37 38936.54| 9 36728.20| 100 42854.99 31 19117.67| 64 41413.16| 17 29639.63
26 29452320 7 26278.09] 98 42951.56| 30 17018.63] 60 40590.17| - -
50 52223.15| 13 48447.49] 92 42391.98 31 17565.95 57 39587.85 - -
40 46218.35 11 44155.66] 90 42435.16| 29 17425.55 52 36195.00] 12 29402.90

© 00O NO O WN PR

=
o

Table 15: Best results, 1000 locations. Two entries are missing asdtresponding problem instances no longer exist.

difference between LNS and ALNS only really becomes apparen we consider large instances. Note that
the problems that need to be solved in the real world oftee liwensions comparable to or greater than the
biggest problems solved in this paper.

Finally the computational experiments performed in Sect.3 indicated that a simple LNS heuristic
seems to be more sensitive to the choices of removal heucsthpared to the choices of insertion heuristics.
It would be interesting to see if this holds in general foresthroblems as well.

5 Conclusion

This paper presented an extension to the large neighbordem@dh and the ruin and recreate heuristic called
adaptive LNS. The heuristic was tested on the pickup angietglproblem with time windows achieving good
results in a reasonable amount of time. The idea of combisgnvgral sub heuristics in the same search proved
to be successful.

As the proposed model is quite general would be interestirexamine if the model and heuristic can be
used to solve other vehicle routing problems. We are cuyreviirking on this topic and the results are very
promising as the heuristic has been able to discover nevsbkgions to standard benchmarks for vehicle rout-
ing problems with time windows and multi-depot vehicle ingtproblems and other vehicle routing problems
[16], [20].

It would also be interesting to apply the ideas presentetlijndaper to other combinatorial optimization
problems. The adaptive LNS framework is easily applicablemost problems, taking advantage of the numer-
ous robust and fast construction heuristics designed gltinm last decades for various optimization problems.

6 Acknowledgments

The authors wish to thank Jakob Birkedal Nielsen for helgfstussions during the development of the heuris-
tic presented in this paper and Emilie Danna for valuabkécsim of the paper. Furthermore we would like to
thank the three anonymous referees for valuable commedtsarections.

7 Appendix

Tables 16 to 21 show detailed information about the solstfonnd during the experiment described in Section
4.5.

References

[1] R.K. Ahuja, O. Ergun, J.B. Orlin, A.P. Punnefy,survey of Very Large Scale Neighborhood Search Tech-
niques Discrete Applied Mathematick23(2002), 75-102.

22

[2] R. Bent, P. Van Hentenrycki\ Two-Stage Hybrid Algorithm for Pickup and Delivery Vedigtouting
Problems with Time Window®roceedings of the International Conference on ConstRaimgramming
(CP-2003), Lecture Notes in Computer Scie@883 123-137.

[3] R. Bent, P. Van HentenryckA Two-Stage Hybrid Algorithm for Pickup and Delivery Vegidout-
ing Problems with Time WindowAppendix, available at http://www.cs.brown.edu/pedlent/pickup-
appendix.ps.

[4] R. Bent, P. Van Hentenrycld Two-Stage Hybrid Local Search for the Vehicle Routing Riombwith Time
Windows To appear in Transportation Science.

[5] J.-F. Cordeau, G. Laporte, A. Mercidy,Unified Tabu Search Heuristic for Vehicle Routing Problevith
Time WindowsJournal of the Operational Research Socky2001), 928-936.

[6] T.H. Cormen, C.E., Leiserson, R.L. Rivest, C. Stdimroduction to Algorithms, Second EditioMIT
Press, 2001.

[7] G. Desaulniers, J. Desrosiers, A. Erdmann, M.M. SolopfoSoumisThe VRP with Pickup and Delivery
in P. Toth and D. Vigo (eds.): The Vehicle Routing ProblenAIMonographs on Discrete Mathematics
and Application9 (2002), SIAM, Philadelphia, 225-242.

[8] Y. Dumas, J. Desrosiers, F. Sounmide pickup and delivery problem with time windo®&sropean Jour-
nal of Operational Resear@4 (1991), 7-22.

[9] M. Gendreau, F. Guertin, J.-Y. Potvin, R. Séguieighborhood Search Heuristics for a Dynamic Vehicle
Dispatching Problem with Pick-ups and Deliveri@®ch. Rep. CRT-98-10, Centre de Recherche sur les
Transport, Universite de Montreal.

[10] H. C. Lau, Z. Liang,Pickup and Delivery with Time Windows : Algorithms and Teass&Generation
The 13th IEEE Conference on Tools with Artificial Intelligaz ICTAI-2001, Dallas, USA, 333-340.

[11] H. Li, A. Lim, A Metaheuristic for the Pickup and Delivery Problem with @idvindowsThe 13th IEEE
Conference on Tools with Artificial Intelligence, ICTAI-2Q, Dallas, USA, 160-170.

[12] H. Lim, A. Lim, B. Rodrigues,Solving the Pick up and Delivery Problem with Time Windowiagis
“Squeaky Wheel” Optimization with Local Searcfechnical Report 2002, Singapore Management Uni-
versity, Paper No. 7-2002

[13] S. Martello, P. TothAn algorithm for the generalized assignment probl€@perational Research '81, J.P.
Brans (editor), North-Holland, New York (1981).

[14] N. Mladenove, P. Hansenyariable neighborhood searciComputers and Operations Research 24, No.
11 (1997), 1097-1100.

[15] W.P. Nanry, J.W. Barne§olving the pickup and delivery problem with time windowsgigeactive tabu
search Transportation Research Par8B(2000), 107-121.

[16] D. Pisinger, S. Ropkei general heuristic for vehicle routing problejreccepted for publication, Com-
puters and Operations Research (2005).

[17] J.-Y. Potvin, J.-M. Roussea# parallel route building algorithm for the vehicle routirand scheduling
problem with time windowguropean Journal of Operational Resed61{1993), 331-340.

[18] S. Ropke, D. PisingeAn Adaptive Large Neighborhood Search Heuristic for thekBicand Delivery
Problem with Time Window§echnical Report, Department of Computer Science, Usityeof Copen-
hagen 2004.

[19] S. Ropke,Heuristics for the Multi-Vehicle Pickup and Delivery Prebt with Time WindowdMasters
Thesis 01-11-8, Department of Computer Science, Univefitgopenhagen, 2002.

23

[20] S. Ropke, D. PisingeA Unified Heuristic for a Large Class of Vehicle Routing Pexbk with Backhauls
to appear in European Journal of Operational Research.

[21] P. ShawA new local search algorithm providing high quality solutsoto vehicle routing problem3ech-
nical report, Department of Computer Science, Univerditgtoathclyde, Scotland, 1997.

[22] P. ShawUsing Constraint Programming and Local Search Methods tweS@ehicle Routing Problems
Proceedings CP-98 (Fourth International Conference amciptes and Practice of Constraint Program-
ming), 1998.

[23] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, G. Dyd&tecord Breaking Optimization Results Using
the Ruin and Recreate Principl@ournal of Computational Physi&§9(2000), 139-171.

[24] M. Sigurd , D. Pisinger, M. Sigl'he Pickup and Delivery Problem With Time Windows and Preicesls
Transportation Sciencg8 (2004), 197-209.

[25] SINTEF, Vehicle Routing and Travelling Salesperson Problems,Web page:
http://www.sintef.no/static/am/opti/projects/togitvenchmarks.html

[26] M.M. Solomon,Algorithms for the vehicle routing and scheduling problemitt time window constraints
Operations Resear@b (1987), 254-265.

[27] M.A Trick, A Linear Relaxation Heuristic for the Generalized Assignhi&roblem Naval Research Lo-
gistics39(1992), 137-152.

[28] P. Toth, D. Vigo,An Overview of Vehicle Routing Problema P. Toth and D. Vigo (eds.): The Vehi-
cle Routing Problem, SIAM Monographs on Discrete Matheosasind Application® (2002), SIAM,
Philadelphia, 1-26.

[29] H. Xu, Z.-L. Chen, S. Rajagopal, S. Arunapura8ylving a Practical Pickup and Delivery Problem
Transportation Sciencg7 (2003), 347-364.

24

Best known FULL LNS best known
veh. cost References avg. avg. best best avg| veh. cost
sol. #veh. sol. #veh. time
(s)

LR101 19 1650.8 LL 1650.80 19.0 1650.80 19 40 19 1650.80
LR102 17 1487.57 LL 1487.57 17.0 1487.57 17 47 17 1487.57
LR103 13 1292.68 LL 1292.68 13.0 1292.68 13 45 13 1292.68
LR104 9 1013.39 LL 1013.39 9.0 1013.39 9 26 9 1013.39
LR105 14 1377.11 LL 1377.11 14.0 1377.11 14 40 14 1377.11
LR106 12 1252.62 LL 1252.62 12.0 1252.62 12 41 12 1252.62
LR107 10 1111.31 LL 1111.31 10.0 1111.31 10 44 10 1111.31
LR108 9 968.97 LL 968.97 9.0 968.97 9 25 9 968.97
LR109 11 1208.96 SAM 1208.96 11.0 1208.96 11 41 11 1208.96
LR110 10 1159.35 LL 1159.35 10.0 1159.35 10 35 10 1159.35
LR111 10 1108.9 LL 1108.90 10.0 1108.90 10 44 10 1108.90
LR112 9 1003.77 LL 1003.77 9.0 1003.77 9 27 9 1003.77
LC101 10 828.94 LL 828.94 10.0 828.94 10 43 10 828.94
LC102 10 828.94 LL 828.94 10.0 828.94 10 44 10 828.94
LC103 9 1035.35 BH 1037.77 9.0 1035.35 9 49 9 1035.35
LC104 9 860.01 SAM 860.15 9.0 860.01 9 63 9 860.01
LC105 10 828.94 LL 828.94 10.0 828.94 10 41 10 828.94
LC106 10 828.94 LL 828.94 10.0 828.94 10 42 10 828.94
LC107 10 828.94 LL 828.94 10.0 828.94 10 43 10 828.94
LC108 10 826.44 LL 826.44 10.0 826.44 10 46 10 826.44
LC109 9 1000.6 BH 1000.60 9.0 1000.60 9 35 9 1000.60
LRC101 14 1708.8 LL 1708.80 14.0 1708.80 14 38 14 1708.80
LRC102 12 1558.07 SAM 1558.07 12.0 1558.07 12 41 12 1558.07
LRC103 11 1258.74 LL 1258.74 11.0 1258.74 11 43 11 1258.74
LRC104 10 1128.4 LL 1128.40 10.0 1128.40 10 52 10 1128.40
LRC105 13 1637.62 LL 1637.62 13.0 1637.62 13 42 13 1637.62
LRC106 11 1424.73 SAM 142473 11.0 1424.73 11 42 11 1424.73
LRC107 11 1230.15 LL 1230.14 11.0 1230.14 11 43 11 1230.14
LRC108 10 1147.43 SAM 1147.43 10.0 1147.43 10 25 10 1147.43
LR201 4 1253.23 SAM 1253.23 4.0 1253.23 4 69 4 1253.23
LR202 3 1197.67 LL 1197.67 3.0 1197.67 3 60 3 1197.67
LR203 3 949.4 LL 949.40 3.0 949.40 3 98 3 949.40
LR204 2 849.05 LL 849.05 2.0 849.05 2 181 2 849.05
LR205 3 1054.02 LL 1054.02 3.0 1054.02 3 58 3 1054.02
LR206 3 931.63 LL 931.63 3.0 931.63 3 86 3 931.63
LR207 2 903.06 LL 903.06 2.0 903.06 2 187 2 903.06
LR208 2 734.85 LL 734.85 2.0 734.85 2 285 2 734.85
LR209 3 930.59 SAM 930.59 3.0 930.59 3 73 3 930.59
LR210 3 964.22 LL 964.22 3.0 964.22 3 77 3 964.22
LR211 2 911.52 SAM 906.69 22 911.52 2 126 2 911.52
LC201 3 591.56 LL 591.56 3.0 591.56 3 36 3 591.56
LC202 3 591.56 LL 591.56 3.0 591.56 3 59 3 591.56
LC203 3 585.56 LL 591.17 3.0 591.17 3 81 3 591.17
LC204 3 590.6 SAM 590.60 3.0 590.60 3 141 3 590.60
LC205 3 588.88 LL 588.88 3.0 588.88 3 48 3 588.88
LC206 3 588.49 LL 588.49 3.0 588.49 3 60 3 588.49
LC207 3 588.29 LL 588.29 3.0 588.29 3 62 3 588.29
LC208 3 588.32 LL 588.32 3.0 588.32 3 69 3 588.32
LRC201 4 1406.94 SAM 1406.94 4.0 1406.94 4 38 4 1406.94
LRC202 3 1374.27 LL 1387.74 3.8 1374.79 3 82| 3 1374.27
LRC203 3 1089.07 SAM 1089.07 3.0 1089.07 3 69 3 1089.07
LRC204 3 818.66 SAM 818.66 3.0 818.66 3 173 3 818.66
LRC205 4 1302.2 LL 1302.20 4.0 1302.20 4 75 4 1302.20
LRC206 3 1159.03 SAM 1337.75 3.0 1159.03 3 48 3 1159.03
LRC207 3 1062.05 SAM 1062.05 3.0 1062.05 3 66 3 1062.05
LRC208 3 852.76 LL 852.76 3.0 852.76 3 88 3 852.76
Tot. 402 58054 58249.42 403.00 58060.03 402 368D 402 58059.50
Avg. 66
<PB 1 1
<=PB 54 55
#B 55 54 55

Table 16: Results on 100-customer problems solved with vehicle mi@tion as primary objective. The first column
contains the name of the problem, columns two to four shoarin&tion about the previously best known solutions.
Columns two and three give the number of vehicles in the srlwnd the total traveled distance. Column four refers to
the method that first found the solution (LL: Li and Lim [11]HBBent and Van Hentenryck [2], SAM: SINTEF heuristic,
TS: TetraSoft A/S heuristic). The next five columns show iinfation about the solutions obtained by the ALNS LNS
heuristic. The first two of these columns show the averagariig traveled and the average number of vehicles (averaged
over the 10 experiments performed). The two next columnlaysihe the best solution obtained in the 10 experiments.
The columnavg. timedisplays the average time needed to perform one experimesgiconds. The two last columns
show the best results obtained during experimentationveitfous parameter settings. The last 5 columns provide some
summary information. Th&ot. and Avg. rows respectively sums and averages entries in the coluifims<PB row
indicates how many solutions that are better than the puslidest known solution and the=PB row indicates how
many solution that are at least as good as the previouslkhestn solution #B reports the number of overall best known
solutions that were obtained. Best known solutions are ethwkith bold font.

25

Best known FULL LNS best known
veh. cost Referenceq avg. avg. best best avg| veh. cost
sol. #veh. sol. #veh. time
(s)
LR1 2 1 20 4819.12 LL 4819.12 20.0 4819.12 20 137 20 4819.12
LR1 2_2 17 4666.09 BH 4625.99 17.0 4621.21 17 149 17 4621.21
LR1 2_3 15 3612.64 TS 3626.13 15.0 3612.64 15 173 15 3612.64
LR1 2_4 10 3146.06 BH 3088.07 10.0 3058.12 10 22 10 3037.38
LR1 2 5 16 4760.18 BH 4852.41 16.0 4760.18 16 136 16 4760.18
LR1 2_6 14 4175.16 BH 4261.23 14.0 4184.80 14 164 14 4178.24
LR1 2 7 12 3851.36 BH 3580.94 12.0 3551.47 12 173 12 3550.61
LR1_2 8 9 2871.67 BH 2823.91 9.0 2784.53 9 226 9 2784.53
LR1_2 9 14 4411.54 BH 4438.36 14.0 4354.66 14 144 14 4354.66
LR1_2_10 11 3744.95 BH 3787.23 11.0 3741.29 11 14 11 3714.16
LRC1 2 1 19 3606.06 SAM 3606.06 19.0 3606.06 19 136 19 3606.06
LRC1 2 2 15 3681.36 BH 3684.82 15.0 3674.80 15 143 15 3674.80
LRC1 2 3 13 3161.75 BH 3211.85 13.0 3178.17 13 183 13 3178.17
LRC1 2 4 10 2655.27 BH 2660.26 10.0 2641.67 10 284 10 2631.82
LRC1 2 5 16 3715.81 BH 3718.57 16.0 3716.72 16 141 16 3715.81
LRC1 2 6 17 3368.66 SAM 3372.68 17.0 3368.74 17 141 17 3368.66
LRC1_2_7 15 3417.16 BH 3525.21 14.7 3668.39 14 140 14 3668.39
LRC1_2_8 14 3087.62 BH 3220.69 13.2 3174.55 13 144 13 3174.55
LRC1_2_9 14 3129.65 BH 3259.40 13.1 3226.72 13 140 13 3226.72
LRC1_2_10 13 2833.85 BH 2968.69 12.1 2967.70 12 15 12 2951.29
LC1 2 1 20 2704.57 LL 2704.57 20.0 2704.57 20 146 20 2704.57
LC1 2 2 19 2764.56 LL 2764.56 19.0 2764.56 19 141 19 2764.56
LC1 2_3 17 3134.08 BH 3142.99 17.0 3136.42 17 154 17 3128.61
LC1 2 4 17 2698.73 TS 2711.42 17.0 2704.41 17 209 17 2693.41
LC1 2 5 20 2702.05 LL 2702.05 20.0 2702.05 20 137 20 2702.05
LC1.2 6 20 2701.04 LL 2701.04 20.0 2701.04 20 133 20 2701.04
LC1.2 7 20 2701.04 LL 2701.04 20.0 2701.04 20 139 20 2701.04
LC1_2 8 20 2689.83 LL 2689.83 20.0 2689.83 20 145 20 2689.83
LC1.2 9 18 2724.24 LL 2724.24 18.0 2724.24 18 157 18 2724.24
LC1_2_10 18 2741.56 LL 2967.24 17.0 2943.49 17 104 17 2943.49
LR2_2_1 5 4073.1 SAM 4110.08 5.0 4073.10 5 230 5 4073.10
LR2_2_2 4 3796 SAM 4194.32 4.0 4113.64 4 249 4 3796.00
LR2_2 3 4 3098.36 SAM 3209.80 4.0 3098.36 4 696 4 3098.36
LR2_2_4 3 2487.65 TS 2495.48 3.0 2491.87 3 1191 3 2486.14
LR2_2_5 4 3438.39 SAM 3440.71 4.0 3439.40 4 207 4 3438.39
LR2_2_6 4 3201.54 LL 3204.44 4.0 3201.86 4 499 4 3201.54
LR2_2_7 3 3190.75 LL 3216.40 3.0 3135.05 3 521 3 3135.05
LR2_2_8 3 2187.01 TS 2613.39 2.0 2559.70 2 1114 2 2555.40
LR2_2_9 4 3198.44 SAM 327231 3.9 3930.49 3 425 3 3930.49
LR2_2_10 3 3377.45 SAM 3387.47 3.0 3360.74 3 342 3 3344.08
LRC2_2_1 6 3690.1 BH 3722.20 6.0 3622.11 6 117 6 3605.40
LRC2_2_2 6 2666.01 BH 3403.75 5.0 3327.18 5 201 5 3327.18
LRC2_2 3 4 3141.28 SAM 3138.84 4.0 2965.88 4 323 4 2938.28
LRC2_2 4 4 2190.88 TS 3006.86 3.0 2891.10 3 993 3 2887.97
LRC2_2 5 5 2776.93 BH 2786.49 5.0 2782.83 5 302 5 2776.93
LRC2_2 6 5 2707.96 SAM 2713.57 5.0 2710.14 5 302 5 2707.96
LRC2_2 7 4 3050.03 BH 3140.57 4.0 3056.09 4 217 4 3056.09
LRC2_2 8 4 2401.84 BH 2409.16 4.0 2404.09 4 2864 4 2399.95
LRC2_2 9 4 2209.54 SAM 2214.37 4.0 2210.88 4 419 4 2208.49
LRC2_2_10 3 2699.55 BH 2558.03 3.1 2551.67 3 467 3 2550.56
Lcz2_2 1 6 1931.44 SAM 1931.44 6.0 1931.44 6 100 6 1931.44
LC2_2_2 6 1881.4 LL 1881.40 6.0 1881.40 6 157 6 1881.40
LC2_2_3 6 1844.33 SAM 1845.57 6.0 1844.66 6 234 6 1844.33
LC2_2_4 6 1767.12 LL 1772.02 6.0 1768.22 6 427 6 1767.12
LC2_2 5 6 1891.21 LL 1891.21 6.0 1891.21 6 121 6 1891.21
LC2_2_6 6 1857.78 SAM 1857.93 6.0 1857.78 6 150 6 1857.78
LC2_2_7 6 1850.13 SAM 1850.60 6.0 1850.13 6 151 6 1850.13
LC2_2_8 6 1824.34 LL 1825.88 6.0 1824.73 6 193 6 1824.34
LC2_2 9 6 1854.21 SAM 1854.43 6.0 1854.21 6 193 6 1854.21
LC2_2_10 6 1817.45 LL 1818.04 6.0 1817.45 6 245 6 1817.45
Tot. 615 178380 181707.35 608.10 180930.62 606 15815 606 180418.58
Avg. 264
<PB 22 27
<=PB 42 57
#B 33 31 57
Table 17: Results on 200-customer problems

26

Best known FULL LNS best known
veh. cost Referenceq avg. avg. best best avg| veh. cost
sol. #veh. sol. #veh. time
(s)
LR1_4 1 40 10639.75 TS 10652.59 40.0 10639.75 40 351 40 10639.75
LR1_4 2 31 10533.33 SAM 10125.79 31.0 10015.85 31 554 31 10015.85
LR1_4_3 24 8831.1 SAM 8846.24 23.3 8908.01 23 61. 23 8840.46
LR1_4 4 17 5551.47 LL 6974.01 16.0 6814.84 16 579 16 6744.33
LR1_4 5 30 10233.59 TS 10606.32 29.1 10599.54 29 457 29 10599.54
LR1_4_6 25 9456.68 BH 9686.93 25.0 9573.68 25 554 25 9525.45
LR1_4 7 21 8012.3 SAM 8170.00 19.7 8200.37 19 610 19 8200.37
LR1_4 8 15 6320.03 SAM 6093.04 141 6044.40 14 56 14 5946.44
LR1_4 9 25 10313.6 SAM 9908.16 247 9886.14 24 480 24 9886.14
LR1_4_10 22 8249.87 SAM 8233.16 21.0 8145.03 21 51 21 8016.62
LR2_4 1 8 9726.88 BH 10243.45 8.0 9786.02 8 467 8 9758.46
LR2_4 2 8 7971.09 SAM 9995.30 7.0 9717.03 7 761 7 9496.64
LR2_4 3 6 9794.4 SAM 8586.52 6.0 8116.53 6 1451 6 8116.53
LR2_4 4 5 5116.24 LL 6948.40 4.0 6695.51 4 3409 4 6649.78
LR2_4 5 7 9314.23 SAM 8893.25 7.0 8642.63 7 1094 7 8574.84
LR2_4 6 6 9439.98 SAM 8156.35 6.0 8089.75 6 1234 6 7995.06
LR2_4_7 5 7935.54 SAM 7126.64 5.0 6928.61 5 2019 5 6928.61
LR2_4_8 4 6043.41 LL 5591.83 4.0 5447.40 4 4603 4 5447.40
LR2_4 9 6 8552.29 SAM 8613.50 6.0 8135.86 6 78Q 6 8043.20
LR2_4_10 6 7449.9 TS 8008.78 5.2 7904.77 5 1385 5 7904.77
LC1 4 1 40 7152.06 SAM 7152.06 40.0 7152.06 40 585 40 7152.06
LC1 4 2 39 7326.93 BH 7395.61 38.9 8012.43 38 597 38 8012.43
LC1 4 3 35 7896.36 SAM 8538.36 33.1 8308.94 33 628 33 8308.94
LC1 4 4 30 6451.68 LL 7013.38 30.7 7021.92 30 55 30 6878.00
LC1_ 4.5 40 7150 SAM 7150.00 40.0 7150.00 40 508 40 7150.00
LC1 4 6 40 7154.02 LL 7154.02 40.0 7154.02 40 520 40 7154.02
LC1 4 7 40 7149.43 SAM 7149.43 40.0 7149.43 40 529 40 7149.43
LC1 4 8 39 7111.16 LL 7111.86 39.0 7111.16 39 542 39 7111.16
LC1 4 9 36 7539.92 SAM 7471.34 36.1 7458.43 36 462 36 7452.21
LC1_4 10 36 7181.05 TS 7278.25 35.8 7474.07 35 501 35 7387.13
LC2 4 1 12 4116.33 LL 4116.33 12.0 4116.33 12 319 12 4116.33
LC2 4 2 12 4144.29 SAM 4145.71 12.0 4144.49 12 454 12 4144.29
LC2_4 3 12 4624.76 SAM 4533.47 12.0 4483.34 12 681 12 4431.75
LC2_4_4 12 3743.95 LL 4123.21 12.0 4081.93 12 116 12 4038.00
LC2_4 5 12 4030.63 TS 4030.97 12.0 4030.64 12 366 12 4030.63
LC2_4_6 12 3900.29 SAM 3905.41 12.0 3902.25 12 475 12 3900.29
LC2_4 7 12 3962.51 BH 3976.03 12.0 3969.69 12 481 12 3962.51
LC2_4_8 12 3844.45 SAM 3879.38 12.0 3867.31 12 544 12 3844.45
LC2_4 9 12 4198.61 SAM 4229.42 12.0 4209.49 12 604 12 4188.93
LC2_4_10 12 3828.44 BH 3846.45 12.0 3839.11 12 811 12 3828.44
LRC1_4 1 37 8944.58 TS 9059.11 36.5 9127.15 36 498 36 9127.15
LRC1_4_2 31 8642.74 SAM 8189.18 32.0 8404.51 31 55 31 8346.06
LRC1 4 3 25 7307.09 BH 7413.29 257 7429.00 25 644 25 7387.40
LRC1 4 4 19 5944.14 TS 5918.81 19.0 5901.86 19 90! 19 5838.58
LRC1 4 5 34 9133.11 SAM 8760.38 34.0 8715.74 34 481 33 8773.75
LRC1_ 4 6 31 8817.39 SAM 8236.27 31.2 8198.96 31 474 31 8177.90
LRC1 4 7 30 7869.45 BH 7969.23 29.8 7992.08 29 500 29 7992.08
LRC1 4 8 28 7887.67 SAM 7625.79 27.9 7613.43 27 510 27 7613.43
LRC1 4 9 27 8215.25 SAM 7942.38 26.8 8013.48 26 494 26 8013.48
LRC1_4_10 24 7404.91 SAM 7190.05 24.0 7103.78 24 50! 24 7065.73
LRC2 4 1 13 6655.52 SAM 7750.57 12.0 7471.01 12 553 12 7471.01
LRC2_4_2 11 7467.34 SAM 6385.15 11.0 6332.52 11 110 11 6303.36
LRC2_4_3 9 5480.25 TS 5485.05 9.0 5459.06 9 2126 9 5438.20
LRC2_4_4 6 4279.05 LL 5446.01 5.0 5405.16 5 4034 5 5322.43
LRC2_4 5 11 6120.13 BH 6147.77 11.0 6140.07 11 821 11 6120.13
LRC2_4_6 10 6002.63 SAM 6540.83 9.1 6479.56 9 757 9 6479.56
LRC2_4_7 9 5737.02 SAM 6497.14 8.0 6361.26 8 707 8 6361.26
LRC2_4_8 8 5364.31 SAM 6004.71 7.1 5968.27 7 834 7 5928.93
LRC2_4_9 7 6892.23 SAM 5469.65 7.0 5394.73 7 1275 7 5303.53
LRC2_4_10 7 5057.81 TS 6124.51 6.0 5760.78 6 1243 6 5760.78
Tot. 1183 421215 425816.87 1167.80 422201.17 1158 5285%0 1157 420395.99
Avg. 881
<PB 40 41
<=PB 47 55
#B 19 25 55
Table 18: Results on 400-customer problems

27

Best known FULL LNS best known
veh. cost Referenceq avg. avg. best best avg| veh. cost
sol. #veh. sol. #veh. time
(s)
LR1_6_1 59 22838.3 BVH 23070.74 59.0 22975.40 59 144 59 22838.65
LR1_6_2 45 20985.7 BVH 20714.68 45.0 20614.87 45 143 45 20246.18
LR1_6_3 37 18685.9 BVH 18619.94 37.0 18548.01 37 162 37 18073.14
LR1_6_4 28 13945.59 TS 13677.43 28.0 13604.92 28 2119 28 13269.71
LR1_6_5 39 22985.63 SAM 21983.13 39.0 22562.81 38 1105 38 22562.81
LR1_6_6 33 21427.75 SAM 20373.88 33.0 20060.42 33 1299 32 20641.02
LR1_6_7 27 17070.51 SAM 16615.48 26.6 16746.97 26 147 25 17162.90
LR1_6_8 20 12669.88 SAM 12412.57 19.0 12302.45 19 1911 19 11957.59
LR1_6_9 34 212733 BVH 20917.36 33.2 20765.52 33 105! 32 21423.05
LR1_6_10 28 19337.5 SAM 18400.79 28.0 18233.75 28 98 27 18723.13
LR2_6_1 12 18840.8 BVH 2224555 11.0 22049.96 11 124! 11 21945.30
LR2_6_2 11 17452.75 TS 20038.78 10.0 19666.59 10 2089 10 19666.59
LR2_6_3 9 17598.73 SAM 16161.38 8.0 15897.51 8 372 8 15609.96
LR2_6_4 7 11771.45 TS 11627.85 6.0 10916.25 6 1284 6 10819.45
LR2_6_5 10 19347.2 SAM 20529.74 9.0 20079.56 9 1301 9 19567.41
LR2_6_6 9 19889.05 SAM 18788.90 8.0 17599.80 8 223 8 17262.96
LR2_6_7 7 16262 BVH 16052.41 6.0 15877.37 6 6915 6 15812.42
LR2_6_8 6 11652.95 TS 11175.02 5.0 11026.09 5 1032 5 10950.90
LR2_6_9 9 18853.4 BVH 19465.02 8.0 19180.31 8 212 8 18799.36
LR2_6_10 7 18449.18 SAM 17599.63 7.0 17261.53 7 192 7 17034.63
LC1 6_1 60 14095.6 LL 14095.64 60.0 14095.64 60 145 60 14095.64
LC1 6_2 58 14379.5 BVH 14383.04 58.0 14380.37 58 1441 58 14379.53
LC1_6_3 51 14569.3 BVH 14676.36 50.8 15028.86 50 115 50 14683.43
LC1_ 6_4 48 13567.51 LL 13806.44 49.0 13750.06 49 106 47 13648.03
LC1_6_5 60 14086.3 LL 14086.30 60.0 14086.30 60 1201 60 14086.30
LC1 6_6 60 14090.79 SAM 14090.79 60.0 14090.79 60 1198 60 14090.79
LC1 6_7 60 14083.76 SAM 14083.76 60.0 14083.76 60 1203 60 14083.76
LC1 6_8 59 14554.27 SAM 14557.89 59.0 14554.81 59 126 59 14554.27
LC1 6.9 55 14626.25 TS 14676.34 56.0 14596.57 56 1261 54 14706.12
LC1_6_10 54 14627.2 TS 14918.57 55.6 14711.59 55 132! 53 14879.30
LC2 6_1 19 7977.98 SAM 7977.98 19.0 7977.98 19 1137 19 7977.98
LC2_6_2 19 8253.67 SAM 10612.70 18.0 10384.03 18 1277 18 10277.23
LC2_6_3 18 7436.5 BVH 7781.67 17.8 9007.34 17 203 17 8728.30
LC2_6_4 18 8200.89 TS 8279.98 17.2 8281.94 17 230: 17 8041.97
LC2_6_5 19 8047.37 BVH 8068.59 19.0 8061.74 19 126 19 8047.37
LC2_6_6 19 8169.95 TS 8149.37 19.0 8129.87 19 101 19 8094.11
LC2_6_7 19 8038.56 BVH 8108.38 19.0 8086.65 19 113 19 7998.18
LC2_6_8 18 7808.16 SAM 7632.38 18.0 7616.85 18 1067 18 7579.93
LC2_6_9 19 8134.25 SAM 8173.11 19.0 8160.19 19 1225 18 9501.00
LC2_6_10 18 7555.35 TS 7529.02 18.0 7511.89 18 1775 17 8019.94
LRC1_6_1 53 17930 BVH 18017.12 53.0 17965.79 53 1342 53 17924.88
LRC1_6_2 45 16040.3 BVH 16090.72 44.8 16302.54 44 1389 44 16302.54
LRC1_6_3 36 14407.6 BVH 14395.28 36.0 14310.59 36 172 36 14060.31
LRC1_6_4 25 11308.6 BVH 11260.62 25.0 11097.51 25 249 25 10950.52
LRC1_6_5 47 16803.9 BVH 16837.12 47.8 16831.90 47 125 47 16742.55
LRC1_6_6 44 18205.25 SAM 17059.61 45.0 16994.01 45 117 44 16894.37
LRC1_6_7 39 16407.68 SAM 15582.48 39.6 15565.62 39 113 39 15394.87
LRC1_6_8 36 15352.6 BVH 15346.86 36.0 15174.29 36 109 36 15154.79
LRC1_6_9 36 15751.84 SAM 15092.82 36.2 15000.49 36 1141 35 15134.24
LRC1_6_10 31 14304.37 SAM 14036.50 32.0 13940.77 32 105! 31 1392551
LRC2_6_1 17 13111.6 BVH 14989.05 16.0 14844.71 16 1194 16 14817.72
LRC2_6_2 15 11463 BVH 12856.00 14.0 12801.40 14 210 14 12758.77
LRC2_6_3 11 15167.3 BVH 12413.60 10.6 12812.67 10 4830 10 12812.67
LRC2_6_4 8 12512.5 BVH 10461.14 7.4 10574.87 7 13452 7 10574.87
LRC2_6_5 14 15576.76 SAM 13287.40 14.0 13216.21 14 1827 14 13009.52
LRC2_6_6 13 12655.11 SAM 12717.44 13.0 12709.04 13 182 13 12643.98
LRC2_6_7 11 13996.73 SAM 12109.64 11.0 12070.35 11 1397 11 12007.65
LRC2_6_8 11 14572.07 SAM 12681.15 10.0 12565.94 10 2341 10 12163.43
LRC2_6_9 10 12262.51 TS 14236.58 9.0 13966.61 9 2094 9 13768.01
LRC2_6_10 9 12379.46 TS 12300.10 8.0 12129.35 8 234 8 12016.94
Tot. 1699 873850 867929.80 1686.60 863441.95 1679 133234 1664 860898.44
Avg. 2221
<PB 41 51
<=PB 45 57
#B 9 9 57
Table 19: Results on 600-customer problems

28

Best known FULL LNS best known
veh. cost Referenceq avg. avg. best best avg| veh. cost
sol. #veh. sol. #veh. time
(s)

LR181 80 39374.4 LL 39847.80 80.0 39719.88 80 286y 80 39315.92
LR182 59 36122.5 BVH 35197.46 59.0 34746.99 59 2719 59 34370.37
LR183 45 31763 BVH 30506.10 44.0 30301.99 44 2984 44 29718.09
LR184 26 23454.57 SAM 21738.05 25.6 21900.66 25 345 25 21197.65
LR185 52 39743.88 SAM 37834.13 52.4 37856.78 52 2051 50 39046.06
LR186 42 35011.85 SAM 33815.72 42.6 34315.99 42 225 42 33659.50
LR187 34 28551.92 SAM 27347.55 32.8 28327.14 32 272 32 27294.19
LR188 24 21891.97 SAM 20182.46 21.2 20256.27 21 298 21 19570.21
LR189 44 36550.5 SAM 35693.92 43.0 35531.29 43 189 42 36126.69
LR1810 34 31443.25 SAM 29741.89 33.6 29587.53 33 1891 32 30200.86
LR281 16 29961.22 SAM 34422.50 15.0 34124.11 15 200! 15 33816.90
LR282 13 37565.81 SAM 30839.74 12.8 33326.43 12 450 12 32575.97
LR283 11 30046.47 SAM 26211.39 10.0 25446.52 10 813¢ 10 25310.53
LR284 8 24925.57 SAM 20085.04 7.0 19506.42 7 24419 7 19506.42
LR285 12 34256.18 SAM 34919.19 12.0 33961.98 12 2515 12 32634.29
LR286 10 30688.6 SAM 29070.99 10.0 28629.45 10 5827 10 27870.80
LR287 9 28524.9 BVH 25809.90 8.0 25077.85 8 7397 8 25077.85
LR288 7 19878.42 TS 18168.34 6.0 17800.02 6 2926 5 19256.79
LR289 11 34700.25 SAM 30325.20 10.8 31891.23 10 3025 10 30791.77
LR2810 10 31906.16 SAM 29604.30 9.0 28941.03 9 342 9 28265.24
LC181 80 25184.38 SAM 25184.38 80.0 25184.38 80 2663 80 25184.38
LC182 78 26056.2 BVH 26186.79 78.0 26131.65 78 271 78 26062.17
LC183 66 26700.6 BVH 26135.96 66.8 26308.88 66 2591 65 25918.45
LC184 61 23427.2 BVH 23880.34 62.4 23786.46 62 189p 60 22970.88
LC185 80 25211.22 SAM 25211.22 80.0 25211.22 80 2207 80 25211.22
LC186 80 25164.25 SAM 25164.25 80.0 25164.25 80 2210 80 25164.25
LC187 80 25158.38 SAM 25158.38 80.0 25158.38 80 2249 80 25158.38
LC188 78 25427.1 BVH 25262.20 79.0 25255.06 79 218y 78 25348.45
LC189 74 25536 BVH 26352.66 75.4 26363.13 74 2488 73 25541.94
LC1810 72 26364.93 TS 26896.75 75.0 26522.79 74 2394 71 25712.12
LC281 24 11687.06 SAM 11687.06 24.0 11687.06 24 1030 24 11687.06
LC282 25 12575 BVH 12634.54 25.0 12614.42 25 246 24 14358.92
LC283 25 12500.5 BVH 13687.38 24.0 13551.68 24 2011 24 13198.29
LC284 24 13438.1 TS 12662.06 24.0 12593.32 24 3046 23 13376.82
LC285 25 12298.9 BVH 12357.15 25.0 12350.55 25 123y 25 12329.80
LC286 25 12064.8 BVH 12112.84 25.0 12090.57 25 1718 24 12702.87
LC287 25 11899.18 TS 11895.72 25.0 11878.10 25 136 25 11855.86
LC288 24 11724.46 TS 11649.71 24.0 11592.23 24 152 24 11482.88
LC289 24 11700.86 TS 11685.81 24.0 11673.27 24 1862 24 11629.61
LC2810 24 12139.06 TS 11693.40 24.0 11615.76 24 1874 24 11578.58
LRC181 67 32587.9 BVH 32275.83 67.6 32268.95 67 2206 67 32268.95
LRC182 56 28843.1 BVH 28306.81 58.4 28180.05 58 2515 57 28395.39
LRC183 49 24933.9 BVH 24672.74 51.0 24628.67 51 3207 50 24354.36
LRC184 35 18768.4 BVH 18696.22 35.0 18666.34 35 427 35 18241.91
LRC185 60 32578.04 SAM 31439.49 63.2 31121.74 63 2218 61 30995.48
LRC186 56 29971.97 SAM 29037.55 59.8 28934.95 59 2135 58 28568.61
LRC187 53 29948.45 SAM 28696.11 55.8 28543.20 55 1944 54 28164.41
LRC188 49 28160.88 SAM 26889.40 50.8 26971.48 50 2105 49 26150.65
LRC189 47 26668.91 SAM 25538.12 48.6 25578.39 48 201 47 24930.70
LRC1810 43 25787.27 SAM 24424.49 44.2 24156.12 44 2004 42 24271.52
LRC281 21 21486.1 LL 21905.03 20.8 23476.51 20 221y 20 23289.40
LRC282 19 19127.96 SAM 20056.42 19.2 19930.17 19 352p 18 21786.62
LRC283 17 18842.56 TS 16423.77 16.4 16846.85 16 6751 16 16586.31
LRC284 13 17693.9 BVH 14406.39 12.0 14122.05 12 19037 12 14122.05
LRC285 18 21626.63 TS 20541.12 18.0 20474.88 18 2725 18 20292.92
LRC286 16 25106.28 SAM 21271.46 16.0 21209.60 16 279 16 21088.57
LRC287 15 23808.4 SAM 20402.90 15.0 19764.32 15 318y 15 19695.96
LRC288 13 24260 SAM 19670.06 13.0 19423.27 13 372 13 19009.33
LRC289 13 19514 BVH 19548.71 12.0 19267.46 12 3702 12 19003.68
LRC2810 12 19865.4 BVH 19257.95 10.8 20530.09 10 473 10 19766.78
Tot. 2213 1492200 1432320.80 2223.00 1432077.81 2208 2350p32181 1423062.65
Avg. 3918
<PB 37 48
<=PB 42 53
#B 12 9 53

Table 20: Results on 800-customer problems

29

Best known FULL, Both IA=0.01 LNS best known
veh. cost Referenceq avg. avg. best best avg| veh. cost
sol. #veh. sol. #veh. time
(s)

LR1101 100 57977 BVH 57172.54 100.0 57016.58 100 4576 100 56903.88
LR1102 80 52361.61 SAM 49937.45 80.0 49765.70 80 449 80 49652.10
LR1103 54 44890.55 SAM 42886.53 54.0 42681.33 54 447 54 42124.44
LR1104 31 32336.04 SAM 31450.33 29.0 32133.36 28 4522 28 32133.36
LR1105 64 58260.68 SAM 58138.72 61.6 59135.86 61 3474 61 59135.86
LR1106 51 49697.85 SAM 47333.63 51.8 48637.63 50 3673 50 48637.63
LR1107 39 39861.97 SAM 38315.35 38.2 38936.54 37 3598 37 38936.54
LR1108 29 31515.87 SAM 29674.35 26.4 29452.32 26 4892 26 29452.32
LR1109 52 52282.36 SAM 51412.70 51.0 52223.15 50 3126 50 52223.15
LR11010 42 45710.21 SAM 45873.80 41.0 46218.35 40 2841 40 46218.35
LR2101 19 45835.55 SAM 47201.18 19.0 45493.36 19 315 19 45422.58
LR2102 16 48817.75 SAM 51094.71 15.4 50925.97 15 5324 15 47824.44
LR2103 13 43094.14 SAM 38654.94 12.0 37778.15 12 12056 11 39894.32
LR2104 10 32993.09 SAM 28821.03 8.6 29783.60 8 2649 8 28314.95
LR2105 15 56010.62 SAM 53453.03 14.8 55497.90 14 4244 14 53209.98
LR2106 13 48225.07 SAM 46388.49 12.4 46145.75 12 656 12 43792.11
LR2107 11 38336.76 SAM 36506.87 9.6 38322.91 9 1445 9 36728.20
LR2108 8 32493.7 SAM 27137.04 7.0 26631.41 7 2659 7 26278.09
LR2109 14 55587.14 SAM 52093.74 13.0 50990.04 13 3844 13 48447.49
LR21010 12 47678.69 SAM 44815.46 11.6 46117.94 11 594! 11 44155.66
LC1101 100 42488.66 SAM 42488.66 100.0 42488.66 100 4025 100 42488.66
LC1102 96 43437.2 BVH 43417.56 95.8 43870.19 95 4008 95 43870.19
LC1103 85 42483.61 SAM 42589.34 82.6 42631.11 82 4123 82 42631.11
LC1104 76 39613.83 SAM 38950.40 74.8 39443.00 74 3617 74 39443.00
LC1105 100 42477.4 SAM 42477.41 100.0 42477.41 100 3608 100 42477.41
LC1106 101 42838.39 SAM 42838.39 101.0 42838.39 101 3714 101 42838.39
LC1107 100 42854.99 TS 42855.17 100.0 42854.99 100 3556 100 42854.99
LC1108 99 42711.7 BVH 42964.24 98.0 42954.34 98 3637 98 42951.56
LC1109 93 42899.1 BVH 42614.87 92.2 42391.98 92 3508 92 42391.98
LC11010 91 42243.4 TS 42715.95 90.2 42435.16 90 3582 90 42435.16
LC2101 30 16879.24 TS 16879.24 30.0 16879.24 30 1502 30 16879.24
LC2102 32 17598.6 BVH 19210.16 314 19116.33 31 2171 31 18980.98
LC2103 30 19198.95 SAM 17503.99 30.8 17940.74 30 3651 30 17772.49
LC2104 30 17726 LL 19076.31 30.2 18418.52 30 412 29 18089.93
LC2105 31 17466.42 TS 17149.07 31.0 17137.53 31 2561 31 17137.53
LC2106 31 17352.7 TS 18276.39 31.0 17217.15 31 2012 31 17198.01
LC2107 32 18131.36 TS 19306.15 32.0 17721.20 32 279 31 19117.67
LC2108 30 17974.2 SAM 17266.57 30.0 17035.24 30 274 30 17018.63
LC2109 31 17769.6 BVH 17825.02 31.2 17667.44 31 2809 31 17565.95
LC21010 30 18249.85 SAM 18342.21 30.2 17266.19 30 3297 29 17425.55
LRC1101 84 49315.3 BVH 48997.27 85.4 48934.66 85 363 85 48702.83
LRC1102 73 45679.5 BVH 45351.71 73.0 45272.96 73 396! 73 45135.70
LRC1103 55 36570.5 BVH 35393.15 55.4 35475.72 55 4397 55 35475.72
LRC1104 41 28979.2 BVH 28013.33 40.2 27930.03 40 6042 40 27747.04
LRC1105 76 51455.4 BVH 50012.71 76.2 49816.18 76 3372 76 49816.18
LRC1106 69 47014.55 SAM 44308.41 70.2 44469.08 69 3132 69 44469.08
LRC1107 65 43321.51 SAM 41395.55 65.2 41413.16 64 3047 64 41413.16
LRC1108 60 42968.34 SAM 40946.68 61.0 40590.17 60 3017 60 40590.17
LRC1109 57 42549.12 SAM 39708.07 58.0 39587.85 57 2837 57 39587.85
LRC11010 51 38274.02 SAM 36184.43 52.2 36195.00 52 293 52 36195.00
LRC2101 23 36894.98 SAM 32969.29 23.2 35073.70 22 2864 22 35073.70
LRC2102 22 28019.7 LL 29945.79 22.2 31054.84 21 4749 21 30932.74
LRC2103 19 30226.39 SAM 27201.83 17.8 28662.28 17 952 16 28403.51
LRC2104 14 25836.7 BVH 22976.06 12.8 23611.31 12 28075 12 23083.20
LRC2105 19 39344.9 SAM 31946.46 18.8 34713.96 18 3945 18 34713.96
LRC2106 18 29947.9 SAM 30362.74 18.0 29577.50 18 235 17 31485.26
LRC2107 18 31633.3 BVH 29915.31 17.2 29822.82 17 4432 17 29639.63
LRC21010 13 31361.45 SAM 30293.97 12.2 30160.05 12 5729 12 29402.90
Tot. 2698 2195755 2129031.74 2677.80 2137033.93 2652 3114412646 2122921.51
Avg. 5370
<PB 50 51
<=PB 54 55
#B 7 25 55

Table 21: Results on 1000-customer problems

30

